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ÖNSÖZ 

 Sayı teorisi, matematiğin en eski, en derin ve belki de en büyülü 

dallarından biridir. İnsanlık, binlerce yıldır sayıların sırlarını çözmeye 

çalışmaktadır: bir sayı neden asaldır, neden bölünmez, neden tam kare 

değildir, iki asalın toplamı neden her zaman çift sayı verir, sonsuz tane asal 

gerçekten var mıdır, yoksa bir yerde bitecek midir? 

 Bu soruların bazıları Pisagor’dan beri, cevaplandırılmayı 

beklemektedir. Ama ilginç olan şudur: bu sorulara verilen her yanıt, 

insanlığın teknolojiye, güvenliğe, iletişime ve hatta sanata bakışını derinden 

değiştirmiştir. Bugün milyarlarca insanın her gün farkında olmadan 

kullandığı internet bankacılığı, mesajlaşma uygulamaları, blockchain, dijital 

imzalar gibi hayatımızın vazgeçilmezleri arasında yer alan uygulamaların 

hepsinin temelinde sayı teorisinin sessiz ama güçlü sonuçları 

bulunmaktadır.  

 Elinizdeki bu kitap, sayı teorisine giriş niteliğinde yazılmış iki ciltlik 

bir çalışmanın ilk parçasıdır. Amacım, konuyu olabildiğince yalın, mantıksal 

sırayla ve mümkün olduğunca çok örnekle anlatmaktır. Üniversite 

düzeyinde ilk sayı teorisi dersini alan bir öğrencinin rahatlıkla takip 

edebileceği, lise son sınıf veya üniversite hazırlık öğrencilerinden meraklı 

ortaöğretim öğrencilerine kadar geniş bir kitlenin faydalanabileceği bir dil 

hedefim olmuştur. 

 Kitapta klasik konulara (bölünebilme, asal sayılar, kongrüanslar, 

Diophantine denklemler, aritmetiğin temel teoremi, vs.) yer verirken, aynı 

zamanda öğrencinin sıkça sorduğu “Peki bu nerede kullanılır?”, “Bunun 

ispatı gerçekten gerekli mi?”, “Daha kısa-daha zarif bir yol yok mu?” gibi 

sorulara da elimden geldiğince yanıt vermeye çalıştım. 

 Birinci cilt, sayı teorisinin temel yapı taşlarını (iyi sıralama, 

indüksiyon, bölünebilme kuralları, Euclid algoritması, asallık, temel 

aritmetik teoremi, basit kongrüanslar) olabildiğince sağlam bir şekilde 
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yerleştirmeyi amaçlıyor. İkinci ciltte ise daha ileri konulara (kuadratik 

karşılıklılık, ilkel kökler, Euler’in 𝜙 fonksiyonu, analitik sayı teorisine giriş, 

aritmetik fonksiyonlar, bazı açık problemler) geçmeyi planlıyorum. 

 Bu yolculukta yanımda olduğunuz için teşekkür ederim. Umarım 

sayfaları çevirirken zaman zaman “Aa, demek böyleymiş!” dediğiniz, zaman 

zaman da kalemi kâğıdı alıp kendi küçük keşiflerinizi yaptığınız anlar 

yaşarsınız.  

Bitlis  

Şubat 2026  

Hasan Gökbaş 
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1. BÖLÜM 

BAŞLANGIÇ 

Sayı teorisi, matematiğin en önemli alanlarındandır. Antik çağlardan 

beri, insan uygarlığı üzerinde önemli bir etkisi olagelmiştir. Günümüze kadar 

birçok kişi, sayılar teorisinin çeşitli yönlerine katkılarda bulunmuştur. Sayı 

teorisi, Pisagor (MÖ 569-500), Öklid (MÖ 350), Eratosthenes (MÖ 276-196), 

Nicomachus (MS 60-120), Diophantus (MS 200–284), Harizmi (MS 780-850), 

Pisano (MS 1170-1250), Leibniz (MS 1646-1716), Gauss (MS 1777-1855) ve 

Euler (MS 1707-1783) gibi bilim insanlarının katkılarıyla yoluna devam 

etmiştir. Pisagor teoremiyle, matematikçileri kare sayılar ve kare sayılar 

toplamını incelemeye yönlendirmiştir. Öklid, asal sayılara dikkat çekmeye 

çalışmış, iki doğal sayının en büyük ortak bölenini veren algoritmasıyla doğal 

sayıların asal çarpanlarına ayrılmasında rol oynamıştır. Eratosthenes, asal 

sayıların seçilmesini, asal sayıların bir sınırının olmadığını göstermiştir. 

Nicomachus, asal, mükemmel sayılar gibi sayıların mistik özellikleri 

olabileceğini düşünmüş; sayıların küp toplamıyla üçgensel sayılar arasında 

ilişki olabileceğine dair çalışmalarda bulunmuştur. Diophantus, çözümü ve 

içeriğindeki tüm değişkenlerinin tam sayı olacağı denklem çalışmaları 

sunmuştur. Sayılamayacak kadar çok matematikçi sayılamayacak kadar çok 

çalışmalarda bulunarak sayı teorisine katkılar sunmuştur. 

Sayı teorisi 1, 2, 3, … doğal sayılarıyla başladı. Toplama işlemi doğal 

sayılarda geçerlilik gösterirken, çıkarma işlemi doğal sayılarda her zaman 

geçerli olmamıştır. Buna neden elinde 3 adet nesne olan birinden 4 adet nesne 

alınamayacağıdır. Doğal sayılarda her zaman geçerli olmayan çıkarma 

işleminden dolayı -1, -2, -3, … gibi negatif doğal sayılara ihtiyaç duyulmuştur. 

Babil ve Maya uygarlıklarında ortaya çıktığına inanılan 0 kavramı, Hint 

uygarlığının aktif kullanımıyla Arap uygarlığı tarafından bir sayı olarak kabul 

görmüştür. Bu üç sayı topluluğu bir araya getirilerek tam sayılar olarak 

bilinecek yeni bir sayı topluluğu oluşturulmuştur. Toplama, çıkarma ve çarpma 

işlemi yeni sayı topluluğunda geçerli olurken bölme işlemi her zaman geçerlilik 

göstermemiştir. Sayı teorisi çalışmaları bölme işleminin de her zaman geçerli 

olacağı, rasyonel sayılar olarak isimlendirilecek yeni sayı topluluğuyla, sayılar 
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yolculuğuna devam etmiştir. Karşılaşılan sorunlara çözüm bulunarak 

günümüze kadar devam eden sayı teorisi çalışmaları yeni sayı topluluklarıyla 

yoluna devam etmektedir. 

Matematiğin temelini teşkil eden sayılar matematiğin; soyut cebir, 

sayılar teorisi, soyut mantık, kompleks analiz gibi pek çok alanında büyük bir 

öneme sahiptir. 0, 1, 2, 3, … sayılarına doğal sayılar kümesi denir. Doğal sayılar 

ingilizce doğal anlamına gelen “natural” kelimesinden dolayı ℕ sembolüyle 

gösterilir. …, -3, -2, -1, 0, 1, 2, 3, … sayılarına tam sayılar, 0, 1, 2, 3, … sayılarına 

negatif olmayan tam sayılar, 1, 2, 3, … sayılarına pozitif tam sayılar, 0, -1, -2, -3, 

… sayılarına pozitif olmayan tam sayılar, -1, -2, -3, … sayılarına negatif tam 

sayılar denir. Tam sayılar almanca sayılar anlamına gelen “zahlen” 

kelimesinden dolayı ℤ sembolüyle gösterilir. Yine, almanca bölüm anlamına 

gelen “quotient” kelimesinden dolayı, rasyonel sayılar ℚ sembolüyle gösterilir. 

Tam sayılar kümesi aksiyomlarla kurulabilir, tam sayıların aritmetiği 

açıklanan aksiyomlarla yapılabilir. Pozitif tam sayıların kümesini karakterize 

eden aksiyomlar İtalyan matematikçi Giuseppe PEANO tarafından verilmiştir. 

Peano aksiyomları olarak da bilinen tam sayıların aşağıdaki özellikleri vardır: 

i. 1 sembolüyle gösterilen bir pozitif tam sayı vardır. 

ii. Her pozitif -𝑛- tam sayısının -𝑛′- şeklinde ardışığı denen bir tek pozitif 

tam sayısı vardır. 

iii. Ardışığı 1 tam sayısı olan hiçbir pozitif tam sayı yoktur. 

iv. Eğer 𝑛′ = 𝑚′ olacak şekilde 𝑛 ve 𝑚 tam sayıları varsa 𝑛 = 𝑚 olmalıdır. 

v. Pozitif tam sayıların herhangi bir kümesi 1 sayısını ve bu kümeye ait 

herhangi bir sayının ardışığını ihtiva ediyorsa bu küme bütün pozitif 

tam sayıları ihtiva eder. 

İyi Sıralama Prensibi 

Tanım: Pozitif tam sayılardan oluşan, boş olmayan her kümenin bir en 

küçük elemanı vardır. Bu özelliğe iyi sıralama prensibi denir. ℤ+ = {1, 2, 3, 4, … } 

kümesinin boş olmayan her 𝐴 alt kümesinin bir en küçük elemanı vardır. 

1 ∈ 𝐴 olursa ispat tamamdır. 1 ∉ 𝐴 olduğunu farz edelim. A 

kümesindeki 𝑎 > 𝑏 şartını sağlayan 𝑏 sayılarının kümesi 𝐵 olsun. Bu durumda, 
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𝐵 = {𝑏: 𝑏 < 𝑎, 𝑎 ∈ 𝐴} olur. 1 ∈ 𝐵 olduğu aşikardır. B kümesinin tanımından 

𝑏 < 𝑎 olduğundan 𝑏 + 1 ≤ 𝑎 olmalıdır. (𝑏 + 1)  ∈ 𝐵 ise B kümesi bütün pozitif 

tam sayıları kapsamaktadır. Bu durum 𝐴 = ∅ olduğu sonucu verecektir. Hâlbuki 

𝐴 kümesi boş kümeden farklı alınmıştı. Dolayısıyla 𝑏 + 1 ≤ 𝑎 şartını sağlayan 

(𝑏 + 1) sayısı 𝐴 kümesinin bir en küçük elemanı olacaktır. 

Matematik İndüksiyon Prensibi 

 Tanım: 𝐴 kümesi pozitif tam sayıların herhangi bir kümesi olsun. Eğer,  

i. 1 ∈ 𝐴, 

ii. 𝑛 ∈ 𝐴 olduğunda, 

iii. (𝑛 + 1)  ∈ 𝐴 oluyorsa 𝐴 kümesi bütün pozitif tam sayıları kapsar. 

Bu ifadeye matematik indüksiyon prensibi veya tümevarım prensibi 

denir. Tümevarım yöntemi; olmayana ergi, aksine örnek verme, çelişki metodu 

gibi matematikte önemli yeri olan bir ispat metodudur. 

Örnek: 3 + 11 + 19 + 27 + ⋯ + (8𝑛 − 5) = 𝑛(4𝑛 − 1) eşitliğinin her 

pozitif tam sayı için doğru olduğunu gösterelim. 

Çözüm: Yukarıda verilen eşitliği sağlayan pozitif tam sayılar kümesine A ismini 

verelim. 

i. 𝑛 = 1 ∈  ℤ+ için 3 = 1 ∙ (4 ∙ 1 − 1) = 3 eşitliği doğru çıkmaktadır. 

ii. 𝑛 = 𝑘 için 𝑘 ∈  ℤ+ olduğunu kabul edelim. 

iii. 𝑛 = (𝑘 + 1) için (𝑘 + 1)  ∈  ℤ+ olduğunu göstermeliyiz.  

3 + 11 + 19 + 27 + ⋯ + (8𝑘 − 5) = 𝑘(4𝑘 − 1) olduğunu biliyoruz. 

3 + 11 + 19 + 27 + ⋯ + (8𝑛 − 5) + (8𝑘 + 3) = (𝑘 + 1)(4𝑘 + 1) eşitliğinin 

doğru olduğunu göstermeliyiz.  

3 + 11 + 19 + 27 + ⋯ + (8𝑘 − 5) = 𝑘(4𝑘 − 1) eşitliğini yukarıdaki eşitliğin 

sol kısmında yerine yazalım: 

𝑘(4𝑘 − 1) + (8𝑘 + 3) = (𝑘 + 1)(4𝑘 + 3) eşitliğini düzenleyelim: 

4𝑘2 + 7𝑘 + 3 = 4𝑘2 + 7𝑘 + 3 eşitliği elde edilir. 
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 𝑛 = (𝑘 + 1) için (𝑘 + 1)  ∈  ℤ+ olduğu görülür. Tümevarım yöntemiyle 

örnekte verilen eşitliğin, her pozitif tam sayı tarafından gerçeklendiği 

görülecektir. 

Soru: 20 + 21 + 22 + 23 + ⋯ + 2𝑛−1 = 2𝑛 − 1 eşitliğinin her doğal sayı için 

geçerli olacağını gösteriniz. 

Not: (İkinci Tümevarım Metodu) Her 𝑛 ≥ 𝑎 tam sayısı için bir P(n) önermesi 

verilmiş olsun.  

i. 𝑃(𝑎) doğrudur, 

ii. 𝑚 > 0 bir tam sayı olmak üzere 𝑎 ≤ 𝑘 < 𝑚 şartını sağlayan her 𝑘 tam 

sayısı için 𝑃(𝑘) önermesinin doğru kabul edilmesi halinde, 

iii. 𝑃(𝑚) önermesi doğrudur, 

şartları sağlanıyorsa bu takdirde her 𝑛 ≥ 𝑎 tam sayısı için 𝑃(𝑛) önermesi 

doğrudur. 

 Örnek: (𝑛 + 1)! > 2𝑛 eşitsizliğinin 𝑛 ≥ 2 her pozitif tam sayı için doğru 

olduğunu gösterelim. 

Çözüm: Yukarıda verilen eşitliği sağlayan pozitif tam sayılar kümesine 𝐵 ismini 

verelim. 

i. 𝑛 = 2 ∈  ℤ+ için 3! = 6 > 22 = 4 eşitsizliği doğru çıkmaktadır. 

ii. 𝑛 = 𝑘 için 𝑘 ∈  ℤ+ olduğunu kabul edelim. 

iii.  𝑛 = (𝑘 + 1) için (𝑘 + 1)  ∈  ℤ+ olduğunu göstermeliyiz.  

(𝑘 + 1)! > 2𝑘 olduğunu biliyoruz.  

(𝑘 + 2)! > 2𝑘+1 eşitsizliğinin doğru olduğunu göstermeliyiz.  

(𝑘 + 2)! = (𝑘 + 2)(𝑘 + 1)! > 2 ∙ 2𝑘 = 2𝑘+1 eşitsizliği (𝑘 + 2) > 2 eşitsizliği 

yardımıyla elde edilir. 

 𝑛 = (𝑘 + 1) için (𝑘 + 1)  ∈  ℤ+ olduğu görülür. Tümevarım yöntemiyle 

örnekte verilen eşitsizliğin, 𝑛 ≥ 2 her pozitif tam sayı tarafından gerçeklendiği 

görülecektir. 
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Soru: 
1

1∙2
+

1

2∙3
+

1

3∙4
+ ⋯ +

1

𝑛∙(𝑛+1)
=

𝑛

𝑛+1
 eşitliğinin her pozitif tam sayı 

için doğru olduğunu gösteriniz. 

Soru: Bernoulli Eşitsizliği olarak da bilinen, (1 + 𝑎)𝑛 ≥ 1 + 𝑛𝑎 eşitsizliğini 

(1 + 𝑎) > 0 olmak üzere her pozitif tam sayının gerçeklediğini gösteriniz. 

Soru: 13 + 23 + 33 + ⋯ + 𝑛3 = (
𝑛(𝑛+1)

2
)

2

 eşitliğinin her pozitif tam sayı için 

doğru olduğunu gösteriniz. 

Güvercin Deliği İlkesi 

Tanım: 𝑛 > 𝑘 olmak üzere 𝑘 tane kutuya 𝑛 tane nesne yerleştirilecekse, 

iki veya daha fazla nesneyi içeren en az bir kutu olmalıdır. 

𝑘 adet kutunun hiçbirinin birden fazla nesnesi olmadığını kabul edelim. 

Bu durumda, toplam nesne sayısı 𝑘 tane olacaktır. 𝑛 > 𝑘 varsayımımızla 

çelişecektir. Dolayısıyla, 𝑛 tane nesne 𝑘 tane kutuya yerleştirilecekse, bir kutu 

birden fazla nesne içermek zorundadır. 

Örnek:  731 kişinin olduğu bir grupta, en az 3 kişinin doğum günlerinin 

aynı olacağını gösterelim. 

Çözüm: Bir yılda doğum günleri sayısının 365 olmasından dolayı en az 3 kişinin 

doğum günü, aynı günde olacaktır. 

Soru:  7 beyaz, 5 mavi top içerisinden, çekilen topun kesinlikle mavi olması için 

en az kaç top çekileceğini bulunuz. 

Tam sayıların şu özellikleri mevcuttur: 

i. 𝑎, 𝑏 ∈ ℤ için 𝑎 + 𝑏 ∈ ℤ ve 𝑎 ∙ 𝑏 ∈ ℤ (Kapalılık Özelliği), 

ii. 𝑎, 𝑏 ∈ ℤ için 𝑎 + 𝑏 = 𝑏 + 𝑎 ve 𝑎 ∙ 𝑏 = 𝑏 ∙ 𝑎 (Değişme Özelliği), 

iii. 𝑎, 𝑏, 𝑐 ∈ ℤ için 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 ve 𝑎 ∙ (𝑏 ∙ 𝑐) = (𝑎 ∙ 𝑏) ∙ 𝑐 

(Birleşme Özelliği), 

iv. 𝑎, 𝑏, 𝑐 ∈ ℤ için 𝑎 ∙ (𝑏 + 𝑐) = 𝑎 ∙ 𝑏 + 𝑎 ∙ 𝑐 ve (𝑏 + 𝑐) ∙ 𝑎 = 𝑏 ∙ 𝑎 + 𝑐 ∙ 𝑎  

(Dağılma Özelliği), 

v. 𝑎, 𝑏, 𝑐 ∈ ℤ için 𝑎 + 𝑐 = 𝑏 + 𝑐 ise 𝑎 = 𝑏 ya da 

𝑎 ∙ 𝑐 = 𝑏 ∙ 𝑐 ise 𝑎 = 𝑏  𝑐 ≠ 0 (Kısaltma Özelliği), 
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vi. 𝑎, 𝑏 ∈ ℤ için ya 𝑎 = 𝑏 ya 𝑎 > 𝑏 ya da 𝑎 < 𝑏 (Üç Hal Kuralı), 

vii. 𝑎, 𝑏, 𝑐 ∈ ℤ için 𝑎 < 𝑏 ve 𝑏 < 𝑐 ise 𝑎 < 𝑐 (Geçişme Özelliği), 

viii. 𝑎, 𝑏, 𝑐 ∈ ℤ için 𝑎 < 𝑏 ise 𝑎 + 𝑐 < 𝑏 + 𝑐 ya da 𝑎 ∙ 𝑐 < 𝑏 ∙ 𝑐, 𝑐 > 0 ya da 

𝑎 ∙ 𝑐 > 𝑏 ∙ 𝑐, 𝑐 < 0   (Genişletme Özelliği), 

ix. |𝑎| = {
𝑎,   𝑎 > 0
0,   𝑎 = 0

−𝑎,   𝑎 < 0
(Mutlak Değer Özelliği). 

Teorem: 𝑘 herhangi tam kare olmayan bir tam sayı olmak üzere, 𝑟2 = 𝑘 

eşitliğini sağlayan hiçbir rasyonel sayı yoktur. 

İspat: 𝑟2 = 𝑘 eşitliğini sağlayan, (𝑎, 𝑏) = 1 olmak üzere, 𝑟 =
𝑎

𝑏
 rasyonel 

sayısının olduğunu kabul edelim. 𝑎2 = 𝑘 ∙ 𝑏2 eşitliği elde edilir. 𝑘 pozitif tam 

sayısına karşılık 𝑙2 < 𝑘 < (𝑙 + 1)2 şeklinde olacak bir pozitif 𝑙 tam sayısı vardır.  

𝑏2𝑙2 < 𝑎2 < 𝑏2(𝑙 + 1)2 

𝑏𝑙 < 𝑎 < 𝑏(𝑙 + 1) 

0 < 𝑎 − 𝑏𝑙 < 𝑏. 

Ayrıca, (𝑘𝑏 − 𝑎𝑙)2 = 𝑘2𝑏2 − 2𝑘𝑏𝑎𝑙 + 𝑎2𝑙2 = 𝑘𝑎2 − 2𝑘𝑏𝑎𝑙 + (𝑏𝑙)2 =

𝑘(𝑎 − 𝑏𝑙)2 eşitliğinden 𝑘 =
(𝑘𝑏−𝑎𝑙)2

(𝑎−𝑏𝑙)2  elde edilir. 
(𝑘𝑏−𝑎𝑙)2

(𝑎−𝑏𝑙)2  ve 
𝑎

𝑏
, 𝑘 tam sayısının iki 

gösterimi olacaklardır. Buradan, (𝑎 − 𝑏𝑙) > 𝑏 elde edilecektir. Elde edilen 

sonuç varsayımımızla çelişecektir. Dolayısıyla, 𝑘 herhangi tam kare olmayan bir 

tam sayı olmak üzere, 𝑟2 = 𝑘 eşitliğini sağlayan hiçbir rasyonel sayı yoktur. 

Teorem: 𝑟2 = 2 eşitliğini sağlayan hiçbir rasyonel sayı yoktur. Başka bir 

ifadeyle √2 irrasyonel bir sayıdır. 

İspat: 𝑟2 = 2 eşitliğini sağlayan en az bir rasyonel sayısının olduğunu kabul 

edelim. 𝑟 ∈ ℚ olmasından dolayı (𝑎, 𝑏) = 1 ve 𝑏 ≠ 0 olmak üzere, 𝑟 =
𝑎

𝑏
 

şeklinde yazılabilir. Eşitlik 
𝑎2

𝑏2 = 2, 𝑎2 = 2𝑏2 şekline dönüşür. Bu durum bize 

hem 𝑎2 hem de 𝑎 tam sayılarının çift sayı olacağı sonucuna götürür. 𝑎 = 2𝑘 

olduğunu varsayarak eşitliği yeniden düzenleyelim. 4𝑘2 = 2𝑏2 veya 2𝑘2 = 𝑏2 

olur. Bu sonuçta bizi hem 𝑏2 hem de 𝑏 tam sayılarının çift sayı olacağı sonucuna 

götürür. (𝑎, 𝑏) ≠ 1 sonucu, başlangıçta ki varsayımımız (𝑎, 𝑏) = 1 olmasıyla 
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çelişir. Dolayısıyla 𝑟2 = 2 eşitliğini sağlayan hiçbir rasyonel sayı yoktur. Yani 

√2 irrasyonel bir sayıdır. 

İrrasyonel sayı kavramı, Pisagor matematikçileri üyesi olan Hippasus 

(MÖ530-450)’la hayatımızda yer edinmiştir. Pisagor her ne kadar irrasyonel 

sayıların varlığını kabul etmemiş olsa da modern matematikçilerin kabulüyle 

irrasyonel sayılar günümüzde cebirsel ve transandantal olarak ikiye ayrılmıştır. 

Rasyonel ve İrrasyonel sayıların birleşimi olan Gerçek sayılar kümesi ℝ 

sembolüyle gösterilir. Gerçek sayılar kavramı, gelişimine antik Yunan'da 

başlamıştır. Öklid, modern gerçek sayılar teorisine eşdeğer olan oranlar 

teorisini geliştirmiştir. 17. yüzyılda, John Napier ve Simon Stevin sonsuz ondalık 

genişleme kavramını tanıtmıştır. Cantor ve Dedekind, modern gerçek sayılar 

teorilerinin ortaya çıkmasına katkıda bulunmuşlardır. 

Örnek: √2 irrasyonel sayısının yaklaşık değerini bulalım. 

Çözüm: 2 sayısının karekökünü bölme benzeri bir algoritmayla yaklaşık olarak 

bulabiliriz. 

1.adım: Verilen sayıyı sağdan sola doğru çift haneli olarak gruplara ayırırız. 

2.adım: Ondalık olarak kaç basamak yaklaşık değer bulucaksak, verilen sayıyı, 

o ondalık basamak adeti kadar genişletiriz. 

2 sayısını, üç ondalık basamağa kadar yaklaşık değerini bulmak için 2,0000 

şeklinde yazarız. 

2 sayısının karekökünü bulmak için 2 sayısından küçük, 2 sayısına yakın en 

büyük tam kare sayıyı buluruz, 

12 = 1 ≤ 2, 

2 sayısından 1 sayısını çıkarırız: 2 − 1 = 1, 

Kalan olarak, ondalıklı kısmın ilk çiftini alarak 100 sayısını elde ederiz. 

3.adım: Önceki adımda elde edilen tam kare sayının 2 katını alırız, 

1 ∙ 2 = 2. 
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4.adım: Önceki adımda elde edilen sayının sağına bir rakam ekleyip, elde edilen 

yeni sayıyla o rakamla çarpımını bulunarak, iki önceki adımda elde edilen 

sayıya yakınlaşırız. 

2 sayısının sağına 4 eklenerek 24 sayısını elde ederiz ve 24 sayısı 4 sayısıyla 

çarpılarak 96 sayısını elde ederiz. Bu sayı 100 sayısından çıkarılarak kalan 4 

sayısını buluruz. 

Tahminimiz 1,4 olur. 

5.adım: Kalan olarak, ondalıklı kısmın ikinci çiftini alarak 400 sayısını elde 

ederiz. 

Tahminimizden hareketle 14 ∙ 2 = 28 sayısını buluruz ve bu sayının sağına bir 

rakam ekleyip elde edilen sayıyla o rakamı çarparak 400 sayısına yakınlaşırız. 

281 sayısıyla 1 sayısı çarpılarak 281 sayısını elde ederiz. Bu sayı 400 sayısından 

çıkarılarak kalan 119 sayısını buluruz. 

Tahminimiz 1,41 olur. 

6.adım: Kalan olarak ondalıklı kısmın son çiftini indirerek 11.900 sayısını elde 

ederiz.  

Tahminimizden hareketle 141 ∙ 2 = 282 sayısını buluruz ve bu sayının sağına 

bir rakam ekleyip elde edilen sayıyla o rakamı çarparak 11.900 sayısına 

yaklaşırız. 2824 sayısıyla 4 sayısı çarpılarak 11.296 sayısını elde ederiz. Bu sayı 

11.900 sayısından çıkarılarak kalan 604 sayısını buluruz. 

Tahminimiz 1,414 olur. 

2 sayısının karekökü yaklaşık olarak 1,414 olacaktır. Daha fazla hassasiyet için 

işlem devam ettirilebilir. 

Soru: √2 irrasyonel sayısının yaklaşık değerini Newton-Raphson modeliyle 

bulunuz. 

Binom Açılımı 

 Sayı Teorisi çalışmalarında sıklıkla kullanılabilecek sayma 

tekniklerinden biri de kombinasyon ismini verdiğimiz, aşağıdaki şekilde 

tanımlanacak olan yapıdır. 
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Tanım: 0 ≤ 𝑟 ≤ 𝑛 ve 𝑛 ve 𝑟 herhangi iki tam sayı olmak üzere, 

(
𝑛
𝑟

) =
𝑛!

𝑟! (𝑛 − 𝑟)!
 

şeklinde tanımlanan yapıya kombinasyon veya binom katsayıları denir. 

Kombinasyon veya binom katsayıları, 𝑛 ≥ 1 olmak üzere, (𝑎 + 𝑏)𝑛 ifadesinden 

elde edilen bir özelliktir: 

(𝑎 + 𝑏)0 = 1 

(𝑎 + 𝑏)1 = 𝑎 + 𝑏 

(𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2 

(𝑎 + 𝑏)3 = 𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏2 + 𝑏3 

(𝑎 + 𝑏)4 = 𝑎4 + 4𝑎3𝑏 + 6𝑎2𝑏2 + 4𝑎𝑏3 + 𝑏4 işlemi devam ettirilerek aşağıdaki 

genel yazıma ulaşılmaktadır: 

(𝑎 + 𝑏)𝑛 = 

                     (
𝑛
0

) 𝑎𝑛𝑏0 + (
𝑛
1

) 𝑎𝑛−1𝑏1 + ⋯ + (
𝑛

𝑛 − 1
) 𝑎1𝑏𝑛−1 + (

𝑛
𝑛

) 𝑎0𝑏𝑛.  

Bu açıklamadan yola çıkarak aşağıdaki tanım verilebilir. 

 Tanım: 0 ≤ 𝑟 ≤ 𝑛 ve 𝑛 ve 𝑟 herhangi iki tam sayı olmak üzere,  

(𝑎 + 𝑏)𝑛 = ∑ (
𝑛
𝑟

)
𝑛

𝑟=0
𝑎𝑛−𝑟𝑏𝑟 

şeklinde tanımlanan yapıya binom açılımı denir. 

 Örnek: (𝑥 + 𝑦)10açılımında 𝑥6𝑦4 teriminin katsayısını bulalım. 

Çözüm: 𝑥6𝑦4 teriminin kuvvetlerinden 𝑟 = 4 olarak bulunur. (
𝑛
𝑟

) 𝑎𝑛𝑏𝑛−𝑟 

ifadesinde, 𝑛 = 10 ve 𝑟 = 4 alındığında, (
10
4

) 𝑎6𝑏4 =
10∙9∙8∙7

4∙3∙2∙1
𝑥6𝑦4  = 210𝑥6𝑦4 

sonucu elde edilir. 𝑥6𝑦4 teriminin katsayısının 210 olduğu görülür. 

 Örnek:  12 + 22 + 32 + ⋯ + 𝑛2 değerini bulalım. 

Çözüm: (𝑘 + 1)3 − 𝑘3 = 3𝑘2 + 3𝑘 + 1 eşitliğini binom açılımından elde ederiz. 

Eşitliğin her iki tarafını, 1 sayısından (𝑛 + 1) sayısına kadar toplayalım. 
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23 − 13 = 3 ∙ 12 + 3 + 1 

33 − 23 = 3 ∙ 22 + 6 + 1 

43 − 33 = 3 ∙ 32 + 9 + 1 

       ⋮       =              ⋮            

(𝑛 + 1)3 − 𝑛3 = 3 ∙ 𝑛2 + 3 ∙ 𝑛 + 1       

Eşitliğin her iki tarafı taraf tarafa toplanınca,  

(𝑛 + 1)2 − 1 = 3 ∙ ∑ 𝑘2

𝑛

𝑘=1

+ 3 ∙
𝑛(𝑛 + 1)

2
+ 𝑛 ∙ 1 

sonucuna ulaşırız. Eşitlik düzenlendiğinde,   

(𝑛 + 1)2 − 1 −
3𝑛(𝑛 + 1)

2
− 𝑛 = 3 ∙ ∑ 𝑘2

𝑛

𝑘=1

, 

∑ 𝑘2

𝑛

𝑘=1

=
𝑛(𝑛 + 1)(2𝑛 + 1)

6
, 

12 + 22 + 32 + ⋯ + 𝑛2 =
𝑛(𝑛 + 1)(2𝑛 + 1)

6
, 

değerini elde ederiz. Binom katsayılarının temsillerinden biri adını Pascal(MS 

1623-1662)’dan alan Paskal üçgenidir. 

𝑛 = 0       1       

𝑛 = 1      1  1      

𝑛 = 2     1  2  1     

𝑛 = 3    1  3  3  1    

𝑛 = 4   1  4  6  4  1   

𝑛 = 5  1  5  10  10  5  1  

𝑛 = 6 1  6  15  20  15  6  1 

⋮       ⋮       
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 Pascal üçgenindeki herhangi bitişik iki sayının toplamı, bu iki sayı 

arasında bir sonraki satırda yer alan sayıyı vermektedir. Örneğin; beşinci 

satırda yer alan 4 ve 6 bitişik sayılarının toplamı, bu iki sayı arasında bir sonraki 

satırda yer alacak 10 sayısını verir. 

 Binom katsayılarının bazı özellikleri şunlardır: 

i. (
𝑛
0

) = (
𝑛
𝑛

) = 1 

ii. (
𝑛
𝑟

) + (
𝑛

𝑟 − 1
) = (

𝑛 + 1
𝑟

) 

iii. (
𝑛
𝑘

) (
𝑘
𝑟

) = (
𝑛
𝑟

) (
𝑛 − 𝑟
𝑘 − 𝑟

) 

iv. (
𝑛
0

) + (
𝑛
1

) + (
𝑛
2

) + ⋯ + (
𝑛
𝑛

) = 2𝑛 

v. (
𝑛
0

) − (
𝑛
1

) + (
𝑛
2

) − ⋯ + (−1)𝑛 (
𝑛
𝑛

) = 0 

vi. 0 (
𝑛
0

) + 1 (
𝑛
1

) + 2 (
𝑛
2

) − ⋯ + 𝑛 (
𝑛
𝑛

) = 𝑛2𝑛−1 

vii. (
𝑛
0

) + (
𝑛
2

) + (
𝑛
4

) + (
𝑛
6

) + ⋯ = (
𝑛
1

) + (
𝑛
3

) + (
𝑛
5

) + (
𝑛
7

) + ⋯ = 2𝑛−1 

Örnek:  (
𝑛
0

) + (
𝑛 + 1

1
) + (

𝑛 + 2
2

) = (
𝑛 + 3

2
) eşitliğinin sağlandığını 

gösterelim. 

Çözüm: (
𝑛
0

) =
𝑛!

0!(𝑛−0)!
= 1, (

𝑛 + 1
1

) =
(𝑛+1)!

1!(𝑛+1−1)!
= (𝑛 + 1), (

𝑛 + 2
2

) =

(𝑛+2)!

2!(𝑛+2−2)!
=

(𝑛2+3𝑛+2)

2
 ve (

𝑛 + 3
2

) =
(𝑛+3)!

2!(𝑛+3−2)!
=

(𝑛25𝑛+6)

2
 değerleri elde edilir. 

1 + (𝑛 + 1) +
(𝑛2 + 3𝑛 + 2)

2
=

2 + (2𝑛 + 2) + (𝑛2 + 3𝑛 + 2)

2
=

(𝑛2 + 5𝑛 + 6)

2
 

işlem sonucundan eşitlik elde edilir. 

Soru:  
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𝑛. üçgensel sayı 𝑡𝑛 =
𝑛(𝑛+1)

2
 şeklinde tanımlanmaktadır. 𝑛 ≥ 1 olmak 

üzere,  

i) 𝑡𝑛 = (
𝑛 + 1

2
), 

ii) 𝑡1 + 𝑡2 + 𝑡3 + ⋯ + 𝑡𝑛 =
𝑛(𝑛+1)(𝑛+2)

6
, eşitliklerinin sağlandığını 

gösteriniz. 

Soru:  (
2
2

) + (
3
2

) + (
4
2

) + (
5
2

) + ⋯ + (
𝑛
2

) = (
𝑛 + 1

3
) eşitliğini 𝑛 ≥ 2 olmak üzere 

her tam sayı için geçerli olduğunu gösteriniz. 

Soru:  

 𝑛. beşgensel sayı 𝑝𝑛 =
𝑛(3𝑛−1)

2
 şeklinde tanımlanmaktadır. 𝑛 ≥ 1 olmak 

üzere, 𝑝𝑛 = 𝑝𝑛−1 + (3𝑛 − 2) olduğunu gösteriniz. 

Soru: 22 + 42 + 62 + ⋯ (2𝑛)2 = (
𝑛 + 2

3
) eşitliğinin sağlandığını gösteriniz. 
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UYGULAMALAR 

1) 2𝑚 + 1 < 2𝑚 eşitsizliğinin 𝑚 ≥ 3 her pozitif tam sayı için doğru olduğunu 

gösteriniz.  

2) 2𝑛 > 𝑛2 eşitsizliğinin 𝑛 ≥ 5 her pozitif tam sayı için doğru olduğunu gösteriniz.  

3) 𝑎 ≥ 1 olmak üzere, 
𝑎(𝑎2+2)

3
 işlem sonucunun bir tam sayı olduğunu gösteriniz. 

4)  Ardışık herhangi üç tam sayıdan birinin 3 tam sayısıyla bölündüğünü 

gösteriniz(𝑝 bir tam sayı olmak üzere, herhangi bir tamsayının 3𝑝, 3𝑝 ∓ 1 

formunda yazılabileceğini göz önüne alınız).  

5) 𝑘 ≥ 𝑟, 𝑘 ve 𝑟 iki tam sayı olmak üzere 𝑟|𝑘! olduğunu gösteriniz.  

6)  𝑀 = 1 ∙ 1! + 2 ∙ 2! + 3 ∙ 3! + ⋯ + 𝑛 ∙ 𝑛! sayısının [2, (n+1)] aralığındaki 

hiçbir tam sayıya bölünemediğini gösteriniz. 

7) 4𝑞 + 1 formundaki tam sayılar kümesinin çarpma işlemine göre kapalı 

olduğunu gösteriniz. 

8) 12 + 22 + 32 + ⋯ + 𝑛2 =
𝑛(𝑛+1)(2𝑛+1)

6
 olduğunu gösteriniz. 

9) 11 tam sayısıyla bölünebilme kuralını gösteriniz. 

10) Bir tam sayının karesinin 3𝑝 ya da 3𝑝 + 1 formunda yazılabileceğini 

gösteriniz.   

11) (
𝑛
0

) + (
𝑛 + 1

1
) + (

𝑛 + 2
2

) + ⋯ + (
𝑛 + 𝑘

𝑘
) = (

𝑛 + 𝑘 + 1
𝑘

) olduğunu gösteriniz. 

12) 𝑛 ≥ 1 tek tam sayı ve 𝑟 =
1

2
(𝑛 − 1) olmak üzere (

𝑛
𝑟

) = (
𝑛

𝑟 + 1
) eşitliğinin 

geçerliliğini gösteriniz. 

13)  Catalan Eşitliği olarak tanımlanan, 𝑛 ≥ 0 her doğal sayısı için sağlanan 

𝐶𝑛 =
1

𝑛+1
(

2𝑛
𝑛

) =
(2𝑛)!

𝑛!(𝑛+1)!
 eşitliğini kullanarak, 𝐶𝑛 =

2(2𝑛−1)

𝑛+1
𝐶𝑛−1 

eşitliğinin doğruluğunu gösteriniz. 

14) 
1

2!
+

2

3!
+

3

4!
+ ⋯ +

𝑛−1

𝑛!
 toplamının hiçbir zaman tam sayı olamayacağını 

gösteriniz. 

15) 𝑛 ≤ 𝑝 ≤ 2𝑛 olmak üzere 𝑝 asal sayısının olduğunu gösteriniz (Bertrand’s 

Postulate). 

16) İki tek tam sayının kareleri farkının 8 sayısıyla bölünebildiğini gösteriniz. 
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17) 1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 + ⋯ + 𝑛 ∙ (𝑛 + 1) =
𝑛(𝑛+1)(𝑛+2)

3
 olduğunu gösteriniz. 

18) 12 + 32 + 52 + ⋯ + (2𝑛 − 1)2 = (
2𝑛 + 1

3
) olduğunu gösteriniz. 

19) 𝑛2 < 𝑛! Eşitsizliğinin 𝑛 ≥ 4 her pozitif tam sayı için gerçeklendiğini 

gösteriniz. 

20) 𝑡𝑛, 𝑛. üçgensel sayı; 𝑝𝑛, 𝑛. beşgensel sayı ve 𝑛 ≥ 1 olmak üzere, 

i) 𝑝𝑛 = 𝑡𝑛−1 + 𝑛2, 

ii) 𝑝𝑛 = 3𝑡𝑛−1 + 𝑛, 

iii) 𝑝𝑛 = 2𝑡𝑛−1 + 𝑡𝑛, eşitliklerinin sağlandığını gösteriniz. 
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2. BÖLÜM 

TAM SAYILARDA BÖLÜNEBİLME 

Matematik evrenin doğal bir dilidir. Bir tür olarak varlığımızın 

en başından beri sayılar bizi derinden büyülemiştir. “Matematiğin 

Prensi” Carl Friedrich Gauss'a göre, sayı teorisi, gerçek sayılar 

kümesine ait sayılar arasında bir ilişki kuran, matematiğin en eski 

dallarından biri olmuştur. Sayı Teorisinin sadeliği, Gauss'un 

“Matematiğin Kraliçesi” olarak tanımladığı branşa katkıda bulunan 

matematikçileri büyülemiştir. Sayı Teorisi, günümüzde, teknoloji 

yazılım mühendisliğinin, özellikle güvenlik tabanlı yazılımın mutlak 

öncüsü sayılmaktadır. Sayı Teorisi, ünlü RSA (Rivest-Shamir-

Adleman) algoritmasından blok zinciri dünyasına kadar sürükleyici 

bir hızlı evrim dönemi yaşayan kriptografinin kalbinde yer almıştır. 

Tarihteki iki belirgin an, Sayı Teorisinin gelişiminde öne 

çıkmaktadır. İlk olarak, arkaik zamanlarda, Euclid kendi “en büyük 

ortak bölen” algoritmasını, geometrik gözlemler kullanarak kesirleri 

en basit biçimlerine sadeleştiren muhteşem bir adımlar dizisi ortaya 

koymuştur. Ardından, yaklaşık iki bin yıl sonra Gauss, Öklid'in 

Disquistiones Aritmeticae'deki kapsamlı kanıtlarıyla, çalışmalarını 

birleştirerek Öklid'in ilkelerini resmileştirmiştir. 

Tanım: 𝑎, 𝑏 tam sayılar olmak üzere 𝑏 = 𝑎 ∙ 𝑘 olacak şekilde 

bir 𝑘 tam sayısı varsa 𝑎 tam sayısı 𝑏 tam sayısını böler denir. 𝑎|𝑏 

şeklinde gösterilir. 𝑎 ∤ 𝑏 sembolü de 𝑎 tam sayısının 𝑏 tam sayısını 

bölmediğini gösterir. Tanımdan hareketle, 𝑎 tam sayısı 𝑏 tam sayısını 

bölerse 𝑎 tam sayısı 𝑏 tam sayısının bir bölenidir veya 𝑏 tam sayısı 𝑎 

tam sayısının bir katıdır denir. Eğer 𝑎|𝑏 ve 1 < 𝑎 < 𝑏 olursa 𝑎 tam 

sayısına 𝑏 tam sayısının bir öz böleni, 1 ve 𝑏 sayılarına 𝑏 tam sayısının 

trivial böleni denir. 
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Tam sayılarda bölünebilmenin aşağıdaki özellikleri vardır: 

i. 𝑎|𝑎 (Yansıma Özelliği), 

ii. 𝑎|𝑏 ve 𝑏|𝑎 olduğunda 𝑎 = ∓𝑏 (Simetri Özelliği), 

iii. 𝑎|𝑏 ve 𝑏|𝑐 olduğunda 𝑎|𝑐 (Geçişme Özelliği), 

iv. 𝑎|𝑏 olduğunda ∀𝑐 ∈ ℤ için 𝑎|𝑏 ∙ 𝑐,  

v. 𝑚 ≠ 0 ve 𝑎|𝑏 olduğunda 𝑚 ∙ 𝑎|𝑚 ∙ 𝑏 (Genişletme Özelliği),  

vi. ±1|𝑎,  

vii. ±𝑎|0, 

viii. 𝑎|𝑏, 𝑎 > 0 ve 𝑏 > 0 olduğunda 𝑏 ≥ 𝑎, 

ix. 𝑎|𝑏 ve 𝑎|𝑐 olduğunda 𝑎|𝑏 ± 𝑐 (Toplama-Çıkarma Özelliği), 

x. 𝑎|𝑏 ve 𝑐|𝑑 olduğunda 𝑎 ∙ 𝑐|𝑏 ∙ 𝑑 (Çarpma Özelliği), 

xi. 𝑎|𝑏 ve 𝑐|𝑑 olduğunda 
𝑎

𝑐
|

𝑏

𝑑
 (Bölme Özelliği), 

xii. 𝑎|𝑏 ve 𝑎 ≠ 0 olduğunda 
𝑏

𝑎
|𝑏.  

Teorem: (Kalanlı Bölme Teoremi) Herhangi 𝑎 > 0 ve 𝑏 tam 

sayıları için 𝑏 = 𝑎𝑞 + 𝑟 ve 0 ≤ 𝑟 < 𝑎 olacak şekilde bir tek 𝑞 ve 𝑟 tam 

sayı çifti vardır. 

İspat: 𝑆, 𝑢 pozitif veya negatif bir tam sayı olmak üzere (𝑏 − 𝑢 ∙ 𝑎) 

şeklindeki tam sayıların kümesini göstersin. 𝑆 = {𝑦: 𝑦 = 𝑏 − 𝑢 ∙ 𝑎} 

olur. 

𝑢 = {
−1,   𝑏 ≥ 0
𝑏,      𝑏 < 0

 olacak şekilde seçilecek olursa (𝑏 − 𝑢 ∙ 𝑎) 

negatif olamayacaktır. S kümesinin elemanları da negatif olmayan 

elemanlardan oluşur. İyi sıralama prensibine göre 𝑆 kümesinin bir en 

küçük elemanı vardır. 𝑟, bu en küçük eleman olsun. 𝑞 tam sayısı da 𝑢 

tam sayısının buna karşılık değeri olsun. Buradan 𝑟 = 𝑏 − 𝑞 ∙ 𝑎 ≥ 0 

olur. Bu eşitlikten 𝑟 − 𝑎 = 𝑏 − 𝑞 ∙ 𝑎 − 𝑎 = 𝑏 − (1 + 𝑞)𝑎 < 0 elde 

edilir. Bu eşitlik de 𝑏 = 𝑎𝑞 + 𝑟 ve 0 ≤ 𝑟 < 𝑎 olmasını gerektirir. 
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𝑞 ve 𝑟 tam sayılarının tek olduğunu gösterelim. Bunun için 

aynı şartları sağlayan diğer bir 𝑞1  ve 𝑟1 tam sayı çiftinin varlığını kabul 

edelim. 𝑟 = 𝑟1 olduğunu göstermeliyiz. 

𝑞 ve 𝑟 çiftiyle beraber 𝑞1  ve 𝑟1 çifti için 𝑏 = 𝑎𝑞 + 𝑟, 0 ≤ 𝑟 < 𝑎 

ve 𝑏 = 𝑎𝑞1 + 𝑟1, 0 ≤ 𝑟1 < 𝑎 olur. Eğer 𝑟 ≠ 𝑟1ise 0 < 𝑟1 − 𝑟 < 𝑎 olacak 

şekilde 𝑟 < 𝑟1 olduğunu varsayabiliriz. Bu durumda 𝑟1 − 𝑟 = 𝑎(𝑞 −

𝑞1) ve buradan 𝑎|𝑟1 − 𝑟 elde ederiz. Bu durum ancak 𝑟1 − 𝑟 = 0 

olmasıyla mümkündür. Sonuçta 𝑟1 = 𝑟 ve 𝑞1 = 𝑞 olur. 

Teoremde 𝑎 > 0 olduğunu kabul etmiştik. Bu hipotez gerekli 

değildir. Teoremi; 𝑎 ≠ 0 olmak üzere 𝑎, 𝑏 tam sayıları için 𝑏 = 𝑎𝑞 + 𝑟 

ve 0 ≤ 𝑟 < |𝑎| olacak şekilde bir tek 𝑞 ve 𝑟 tam sayı çifti vardır, 

şeklinde ifade edebiliriz. 𝑏 tam sayısının 𝑎 tam sayısına bölünmesiyle, 

bir tek şekilde elde edilen 𝑞 ve 𝑟 tam sayılarına sırasıyla bölüm ve 

kalan denir. 

Örnek:  Herhangi bir tam sayının karesinin 𝑘 ∈ ℤ olmak üzere, 

5𝑘 veya 5𝑘 ∓ 1 formunda olduğunu gösterelim. 

Çözüm: Herhangi bir tam sayı 𝑝 ∈ ℤ olmak üzere 5𝑝, 5𝑝 ∓ 1 veya 5𝑝 ∓

2 formunda yazılabileceğini kabul edelim. Bu sayıların karelerini 

alalım. 

(5𝑝)2 = 25𝑝2 = 5 ∙ 5𝑝2 = 5𝑘 

(5𝑝 ∓ 1)2 = 25𝑝2 ∓ 10𝑝 + 1 = 5 ∙ (5𝑝2 ∓ 2𝑝) + 1 = 5𝑘 + 1 

(5𝑝 ∓ 2)2 = 25𝑝2 ∓ 20𝑝 + 4 = 5 ∙ (5𝑝2 ∓ 4𝑝 + 1) − 1 = 5𝑘 − 1 

 Bir tam kare sayının 𝑘 ∈ ℤ olmak üzere, 5𝑘 veya 5𝑘 ∓ 1 

formunda olduğu görülür. 

Soru:  Herhangi bir tam sayının küpünün 𝑝 ∈ ℤ olmak üzere, 9𝑝, 9𝑝 +

1, 9𝑝 + 8 veya 9𝑝, 9𝑝 ∓ 1 formunda olduğunu gösteriniz. 

Soru:  3 tam sayısıyla bölünebilme kuralını gösteriniz. 
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Soru: 𝑏 tam sayı olmak üzere, (𝑎3 − 𝑎) sayısının 3 tam sayısıyla 

bölünebildiğini gösteriniz. 

Soru: (𝑎 + 𝑏) değeri 4 tam sayısıyla bölünebilirse, (𝑎 − 3𝑏) değerinin 

de 4 tam sayısıyla bölünebileceğini gösteriniz. 

En Büyük Ortak Bölen 

İkisi aynı anda birden sıfır olmayan 𝑏 ve 𝑐 tam sayılarının 

ortak bölenleri kümesi her zaman 1 ve (−1) tam sayılarını içeren 

sonlu bir tam sayılar kümesidir. Sıfırdan farklı herhangi bir tam 

sayının yalnızca sonlu sayıda bölenleri olduğundan 𝑏 = 𝑐 = 0 durumu 

dışında sonlu sayıda ortak bölenleri vardır. 𝑏 ve 𝑐 tam sayılarından en 

az biri sıfır değilse bu tam sayıların ortak bölenleri mevcuttur. 

Tanım: 𝑎|𝑏 ve 𝑎|𝑐 şartlarını sağlayan a tam sayısına 𝑏 ve 𝑐 tam 

sayılarının bir ortak böleni denir. 

𝑏 ve 𝑐 tam sayılarının 𝑎 gibi ortak bölenlerinin en büyük 

olanına “en büyük ortak bölen” denir. (𝑏, 𝑐) = 𝑎 veya 𝐸𝐵𝑂𝐵(𝑏, 𝑐) = 𝑎 

şeklinde gösterilir. 

Örnek:  12 ve 18 tam sayılarının ortak bölenlerini bulalım ve 

bu ortak bölen sayıların en büyüğünü belirleyelim. 

Çözüm: 12 tam sayısının bölenlerinin kümesi: 

𝐵12 = {∓1, ∓2, ∓3, ∓4, ∓6, ∓12}  

18 tam sayısının bölenlerinin kümesi: 

𝐵18 = {∓1, ∓2, ∓3, ∓6, ∓9, ∓18} şeklinde olacaktır. 

12 ve 18 tam sayılarının ortak bölenlerinin kümesi: 

𝐵12 ∩ 𝐵18 = {∓1, ∓2, ∓3, ∓6} şeklinde olur ve bu kümenin en 

büyük elemanı 6 tam sayısı olacaktır. Dolayısıyla. (12,18) = 6 veya 

𝐸𝐵𝑂𝐵(12,18) = 6 şeklinde gösterilecektir. 
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Euclid Algoritması 

 İki tam sayının en büyük ortak böleni, iki tam sayının pozitif 

bölenlerinin listelenmesi ve ortak bölenlerinin belirlenmesinin 

ardından en büyük ortak bölenin seçilmesiyle bulunabilmektedir. Bu 

durum büyük sayılar için sorun oluşturmaktadır. Bölüm 

algoritmasının tekrar tekrar uygulanmasını içeren daha verimli bir 

yapı, Euclid tarafından verilmiştir. Bu yöntemin Euclid’den önce de 

kullanıldığına dair tarihsel kanıtlar olsa da bugün bu sistem Euclid 

Algoritması olarak anılmaktadır. 

 Teorem: 𝒂 ve 𝑏 tam sayıları 𝑎 > 𝑏 olmak üzere, 

𝑎 = 𝑏𝑞1 + 𝑟1,          0 < 𝑟1 < |𝑏|  

𝑏 = 𝑟1𝑞2 + 𝑟2,          0 < 𝑟2 < 𝑟1  

𝑟1 = 𝑟2𝑞3 + 𝑟3,          0 < 𝑟3 < 𝑟2  

 ⋮  =            ⋮                          ⋮  

𝑟𝑗−2 = 𝑟𝑗−1𝑞𝑗 + 𝑟𝑗 ,          0 < 𝑟𝑗 < 𝑟𝑗−1  

𝑟𝑗−1 = 𝑟𝑗𝑞𝑗+1 + 0.  

𝑎 ve 𝑏 tam sayılarının en büyük ortak böleni yukarıdaki bölme 

algoritmasında sıfırdan farklı son kalandır. (𝑎, 𝑏) = 𝑚𝑎 + 𝑛𝑏 ifadesini 

gerçekleyen 𝑚 ve 𝑛 tam sayıları yukarıdaki denklemlerden 

𝑟𝑗−1, 𝑟𝑗−2, ⋯ , 𝑟2, 𝑟1 tam sayıları yok edilerek bulunur. 

İspat: 𝑎 ve 𝑏 tam sayılarından biri yani 𝑏 = 0 ise 𝑎 ve 𝑏 tam sayılarının 

ortak bölenler kümesi 𝑎 tam sayısının bölenler kümesiyle aynı 

olacaktır. 𝑎 = 𝑏 olduğunda 𝑎 ve 𝑏 tam sayı çiftinin ortak bölenler 

kümesi 𝑎 tam sayısının bölenler kümesiyle aynı olacaktır. Şimdi 𝑎 ve 

𝑏 tam sayılarına bölme algoritması uygulayabiliriz. 

𝑎 = 𝑏𝑞1 + 𝑟1, 0 < 𝑟1 < |𝑏|. Burada 𝑎 ve 𝑏 tam sayı çiftlerinin 

bölenler kümesi (𝑏, 𝑟1) sayı çiftinin bölenler kümesiyle aynıdır. 𝑟1 = 0 
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ise 𝑎 ve 𝑏 tam sayı çiftinin ortak bölenleri (𝑏, 0) sayı çiftinin ortak 

bölenleridir. Eğer 𝑟1 > 0 ise 𝑎 ve 𝑏 tam sayı ortak bölenlerini bulma 

(𝑏, 𝑟1) sayı çiftinin ortak bölenlerini bulma işlemine indirgenmiş 

olacaktır. Burada |b| < |a|, r1 < |b| olduğundan (𝑏, 𝑟1) sayı çiftine 

bölme algoritması uygulanabilir. 𝑏 = 𝑟1𝑞2 + 𝑟2, 0 ≤ 𝑟2 < 𝑟1 olacaktır. 

Aynı düşünceyle (𝑎, 𝑏) sayı çiftinin ortak bölenler kümesinin (𝑟1, 𝑟2) 

sayı çiftinin ortak bölenler kümesiyle aynı olduğu görülecektir. 𝑟2 = 0 

ise 𝑎 ve 𝑏 tam sayı çiftinin ortak bölenleri (𝑟1, 0) sayı çiftinin ortak 

bölenleridir. Eğer 𝑟2 > 0 ise 𝑎 ve 𝑏 tam sayı ortak bölenlerini bulma 

(𝑟1, 𝑟2) sayı çiftinin ortak bölenlerini bulma işlemine indirgenmiş 

olacaktır. Bu işleme art arda devam edildiğinde ya bir yerde bitecektir 

ya da devam edip gidecektir. İkinci durum hiçbir zaman mümkün 

olmayacaktır. Çünkü bu durum pozitif tam sayıların 𝑏 > 𝑟1 > 𝑟2 >

⋯ > 𝑟𝑗 > ⋯ azalan dizisi sonsuz olamaz ve iyi sıralama prensibi 

gereği bir en küçük elemanı vardır ifadesiyle çelişecektir. Sonuçta 

𝑟𝑗+1 = 0 olacak şekilde bir 𝑗 olacaktır. Bu durumda sıfırdan farklı 𝑟𝑗 

değeri için 𝑟𝑗|𝑟𝑗−1 olmalıdır. Sondan bir önceki denklemlerden 𝑟𝑗|𝑏 ve 

𝑟𝑗|𝑎 elde edilir. Şimdi 𝑑1, 𝑎 ve 𝑏 tam sayılarının herhangi bir böleni 

olmak üzere ilk denklemden 𝑑1|𝑟1, ikinci denklemden 𝑑1|𝑟2 ve sondan 

bir önceki denklemden 𝑑1|𝑟𝑗 olacaktır. Bu durum da bizi 𝑟𝑗 = (𝑎, 𝑏) 

sonucuna götürecektir. 

(𝑎, 𝑏) = (𝑏, 𝑟1) = (𝑟1, 𝑟2) = ⋯ = (𝑟𝑗−1, 𝑟𝑗) = (𝑟𝑗 , 0) = 𝑟𝑗 elde 

edilir. 

Örnek:  12378 ve 3054 sayılarının en büyük ortak bölenini 

Euclid algoritması uygulayarak bulalım. 

Çözüm:  

12378 = 4 ∙ 3054 + 162  

3054 = 18 ∙ 162 + 138  
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162 = 1 ∙ 138 + 24  

138 = 5 ∙ 24 + 18  

24 = 1 ∙ 18 + 𝟔  

18 = 3 ∙ 6 + 0  

 Bu eşitliklerde yer alan sıfır sayısından farklı, en büyük pozitif 

kalan tam sayının: 6 sayısının; 12378 ve 3054 tam sayı çiftinin en 

büyük ortak böleni olduğunu gösterir. 

 Yukarıdaki eşitlikleri sondan başlayarak, art arda 

uygulayarak kalanları ortadan kaldırdığımızda: 

 6 = 24 − 18  

   = 24 − (138 − 5 ∙ 24)  

   = 6 ∙ 24 − 138  

   = 6 ∙ (162 − 138) − 138  

   = 6 ∙ 162 − 7 ∙ 138  

   = 6 ∙ 162 − 7 ∙ (3054 − 18 ∙ 162)  

   = 132 ∙ 162 − 7 ∙ 3054  

   = 132 ∙ (12378 − 4 ∙ 3054) − 7 ∙ 3054  

   = 12378 ∙ 132 + 3054 ∙ (−535) eşitliğini elde ederiz. 

 6 = 12378𝑥 + 3054𝑦 olacak şekilde 𝑥 ve 𝑦 değerlerinin 

varlığı görülebilir. 132 ve (-535) değerleri eşitliği gerçekleyen tek 

değerler olmayacaklardır. Eşitliğin her iki tarafına da 3054 ∙ 12378 

değerini eklediğimizde, 

6 = 12378 ∙ (132 + 3054) + 3054 ∙ (−535 − 12378)  

   = 12378 ∙ 3186 + 3054 ∙ (−12913) şeklinde başka bir çözümünü 

daha bulmak mümkün olacaktır. 
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12378 = 4 ∙ 3054 + 162  

3054 = 19 ∙ 162 − 24  

162 = 7 ∙ 24 − 6  

24 = (−4) ∙ (−6) + 0 eşitlik serisi de en büyük ortak bölenin 

negatifini üretmeye uygundur. 

 Tanım: 𝑎 ve 𝑏 tam sayılarının en büyük ortak böleni 𝑑 olmak 

üzere, 

i. 𝑑|𝑎 ve 𝑑|𝑏, 

ii. Eğer 𝑒|𝑎 ve 𝑒|𝑏 ise 𝑑 ≥ 𝑒 durumları geçerlidir. 

Not: Hepsi birden sıfır olmayan 𝑏1, 𝑏2, … , 𝑏𝑛 tam sayılarının en büyük 

ortak böleni (𝑏1, 𝑏2, … , 𝑏𝑛) = 𝑑 şeklinde gösterilir. 

Soru: 10, 15 ve 25 tam sayılarının en büyük ortak bölenini bulunuz. 

 Tanım: İkisi aynı anda sıfır olmayan 𝑎 ve 𝑏 tam sayılarının en 

büyük ortak böleni 1 ise 𝑎 ve 𝑏 tam sayılarına aralarında asal sayılar 

denir. Başka bir ifadeyle (𝑎, 𝑏) = 1 olan sayılara aralarında asal 

sayılar denir. 

 Teorem: 𝑏 ve 𝑐 tam sayılarının en büyük ortak böleni 𝑑 ise 𝑑 =

(𝑏, 𝑐) = 𝑏𝑚 + 𝑐𝑛 olacak şekilde 𝑚 ve 𝑛 tam sayıları vardır. 

İspat: 𝑚 ve 𝑛 tamsayılar olmak üzere 𝑏𝑚 + 𝑐𝑛 şeklindeki lineer 

bileşimlerin kümesi 𝐷 olsun. 𝐷 kümesi bütün tam sayıları kapsadığı 

unutulmamalıdır. 𝑚 ve 𝑛 tam sayılarını 𝑏𝑚 + 𝑐𝑛 en küçük pozitif tam 

sayı olacak şekilde 𝐷 kümesinden seçelim. 𝑏𝑚 + 𝑐𝑛 = 𝑘 olarak 

belirleyelim. 𝑘|𝑏 ve 𝑘|𝑐 olduğunu göstermeliyiz.  

𝑘 ∤ 𝑏 olduğunu kabul edelim. Bölme algoritmasına göre 𝑏 = 𝑞𝑘 + 𝑟 ve 

0 ≤ 𝑟 < 𝑘 olacak şekilde 𝑞 ve 𝑟 tam sayı çifti olacaktır. Bu eşitlikten, 

𝑟 = 𝑏 − 𝑘𝑞 = 𝑏 − (𝑏𝑚 + 𝑐𝑛) = 𝑏(1 − 𝑞𝑚) + 𝑐(−𝑞𝑛) elde edilir ki bu 

𝑟 ∈ 𝐷 olmasını gerektirecektir. Bu sonuç 𝑘 tam sayısının 𝐷 kümesinin 
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en küçük elemanı olduğu kabulüyle çelişmektedir. Bu durumda 𝑘|𝑏 

olmalıdır. Benzer şekilde 𝑘|𝑐 olacağı da gösterilir. 

 𝑑, 𝑏 ve 𝑐 tam sayılarının en büyük ortak böleni olduğundan 

𝑏 = 𝑑𝐵 ve 𝑐 = 𝑑𝐶 (𝐵, 𝐶 ∈  𝑍) yazılabilir. 

 𝑘 = 𝑏𝑚 + 𝑐𝑛 = 𝑑𝐵𝑚 + 𝑑𝐶𝑛 = 𝑑(𝐵𝑚 + 𝐶𝑛) elde edilir. 

 Buradan 𝑑|𝑘 sonucu elde edilir. Bu sonuçtan 𝑑 ≤ 𝑘 sonucuna 

ulaşılır. Halbuki 𝑑 en büyük ortak bölen olduğundan 𝑑 < 𝑘 olamaz. Bu 

durumda 𝑑 = 𝑘 = 𝑏𝑚 + 𝑐𝑛 olmalıdır. Bu da istenilendir. 

 𝑑|𝑏, 𝑑|𝑐 ve 𝑥, 𝑦 ∈ ℤ olmak üzere 𝑑|𝑏𝑥 + 𝑐𝑦 ifadesi “Lineerlik 

Özelliği” olarak isimlendirilir. 

 Teorem: 𝑎 ve b tam sayıları ikisi aynı anda sıfır olmayan tam 

sayılar olmak üzere, 𝑎 ve 𝑏 tam sayılarının aralarında asal olması, 1 =

𝑎𝑚 + 𝑏𝑛 olacak şekilde 𝑚 ve 𝑛 tam sayılarının olmasını 

gerektirmektedir. 

İspat: 𝑎 ve 𝑏 tam sayıları aralarında asal sayılarsa (𝑎, 𝑏) = 1 olur. Bir 

önceki teoremimizden 1 = 𝑎𝑚 + 𝑏𝑛 olacak şekilde 𝑚 ve 𝑛 tam 

sayılarının olacağını ifade edebiliriz. Bu eşitliğin bazı 𝑚 ve 𝑛 değerleri 

için doğru ve (𝑎, 𝑏) = 𝑒 olduğunu kabul edelim. 𝑒|𝑎 ve 𝑒|𝑏 

ifadelerinden 𝑒|(𝑎𝑚 + 𝑏𝑛) veya 𝑒|1 elde edilir ki bu da 𝑒 = 1 olacağını 

gösterir. Bu sonuçtan da istenilene ulaşılır. 

 Örnek: (𝑎, 𝑏) = 1, 𝑎|𝑐 ve 𝑏|𝑐 ise 𝑎𝑏|𝑐 olacağını gösterelim. 

Çözüm: 𝑎|𝑐 ve 𝑏|𝑐 olduğundan 𝑐 = 𝑎𝑟 = 𝑏𝑠 ve (𝑎, 𝑏) = 1 olduğunda 

lineerlik özelliğinden 1 = 𝑎𝑥 + 𝑏𝑦 değerlerini elde ederiz.  

𝑐 = 1 ∙ 𝑐 = 𝑐(𝑎𝑥 + 𝑏𝑦) = 𝑎𝑐𝑥 + 𝑏𝑐𝑦 

𝑐 = 𝑎(𝑏𝑠)𝑥 + 𝑏(𝑎𝑟)𝑦 = 𝑎𝑏(𝑠𝑥 + 𝑟𝑦) 

𝑐 = 𝑎𝑏 ∙ 𝑡 

elde edilir. Son eşitlikten 𝑎𝑏|𝑐 olacağı görülecektir.  
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Euclid Lemması 

 Tanım: 𝑎 ve 𝑏 tam sayıları ikisi aynı anda sıfır olmayan tam 

sayılar olmak üzere, (𝑎, 𝑏) = 1 ve 𝑎|𝑏𝑐 ise 𝑎|𝑐 olur. 

 (𝑎, 𝑏) = 1 ve lineerlik özelliğinden 1 = 𝑎𝑚 + 𝑏𝑛 yazılabilir. 

Eşitliğin her iki tarafı 𝑐 tam sayısıyla çarpılırsa 𝑐 = 𝑐𝑎𝑚 + 𝑐𝑏𝑛 elde 

edilir. 𝑎|𝑏𝑐 ve 𝑎|𝑎𝑚 ise 𝑎|𝑐 elde edilir. 

 Teorem: 𝑎 ve 𝑏 tam sayıları arasında bölme algoritması 𝑎 =

𝑞𝑏 + 𝑟 uygulanırsa (𝑎, 𝑏) = (𝑏, 𝑟) eşitliği vardır. 

İspat: (𝑎, 𝑏) = 𝑑 ve (𝑏, 𝑟) = 𝑒 olsun. 𝑑|𝑎, 𝑑|𝑏 ve 𝑑|(𝑎 − 𝑞𝑏) 

özelliğinden 𝑑|𝑟 elde edilir. Bu da bize 𝑑|𝑒 sonucunu verir. Benzer 

şekilde 𝑒|𝑏, 𝑒|𝑟 ve 𝑒|(𝑏𝑞 + 𝑟) özelliğinden 𝑒|𝑎 elde edilir. Bu da bize 

𝑒|𝑑 sonucunu verir. Böylece 𝑑 = 𝑒 elde edilir. 

 Örnek: 10672 ve 4147 tam sayılarının en büyük ortak 

bölenini bulalım. 

Çözüm:  

10672 = 4147 ∙ 2 + 2378 

4147 = 2378 ∙ 1 + 1769 

2378 = 1769 ∙ 1 + 609 

1769 = 609 ∙ 2 + 551 

609 = 551 ∙ 1 + 58 

551 = 58 ∙ 9 + 29 

58 = 29 ∙ 2 + 0  

(10672, 4147)=(4147, 2378)=(2378, 1769)=(1769, 609)=(609, 

551)=(551, 58)=(58, 29)=29 en büyük ortak bölen olacaktır. 
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 Örnek: 29 = 10672𝑥 + 4147𝑦 şeklinde ifade edelim. 

Çözüm:  

29 = 551 − 58 ∙ 9 

29 = 551 − 9 ∙ (609 − 551 ∙ 1) = 10 ∙ 551 − 9 ∙ 609 

29 = 10 ∙ (1769 − 609 ∙ 2) − 9 ∙ 609 = 10 ∙ 1769 − 29 ∙ 609 

29 = 10 ∙ 1769 − 29 ∙ (2378 − 1769) = 39 ∙ 1769 − 29 ∙ 2378 

29 = 39 ∙ (4147 − 2378) − 29 ∙ 2378 = 39 ∙ 4147 − 68 ∙ 2378 

29 = 39 ∙ 4147 − 68 ∙ (10672 − 2 ∙ 4147) = (−68) ∙ 10672 + 175 ∙ 4147 

29 = 10672 ∙ (−68) + 4147 ∙ (175)  

İşlem sonuçlarından 𝑥 = −68 ve 𝑦 = 175 olur. 

 Teorem:  𝑎, 𝑏 ve 𝑘 > 0 tam sayılar olmak üzere, (𝑘𝑎, 𝑘𝑏) =

𝑘(𝑎, 𝑏) olur. 

İspat: 𝑎 ve 𝑏 tam sayılar, 𝑎 > 𝑏 olmak üzere, Euclid algoritması 

eşitliklerinin her iki tarafı 𝑘 > 0 tam sayısıyla çarpılırsa 

𝑎𝑘 = 𝑏𝑘𝑞1 + 𝑘𝑟1,          0 < 𝑘𝑟1 < 𝑘|𝑏|  

𝑏𝑘 = 𝑟1𝑘𝑞2 + 𝑘𝑟2,          0 < 𝑘𝑟2 < 𝑘𝑟1  

𝑟1𝑘 = 𝑟2𝑘𝑞3 + 𝑘𝑟3,          0 < 𝑘𝑟3 < 𝑘𝑟2  

 ⋮  =            ⋮                          ⋮  

𝑟𝑗−2𝑘 = 𝑟𝑗−1𝑘𝑞𝑗 + 𝑘𝑟𝑗 ,          0 < 𝑘𝑟𝑗 < 𝑘𝑟𝑗−1  

𝑟𝑗−1𝑘 = 𝑟𝑗𝑘𝑞𝑗+1 + 0.  

𝑘𝑎 ve 𝑘𝑏 tam sayılarına Euclid algoritması uygulandığında en büyük 

ortak böleni 𝑘𝑟𝑗 olacaktır. (𝑘𝑎, 𝑘𝑏) =  𝑘𝑟𝑗 = 𝑘(𝑎, 𝑏) olacağı 

görülecektir. 
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Sonuç: 𝑘 < 0 olması durumunda −𝑘 = |𝑘| > 0 olacağı aşikardır. 

(𝑘𝑎, 𝑘𝑏) = (−𝑘𝑎, −𝑘𝑏) = (|𝑘|𝑎, |𝑘|𝑏) = |𝑘|(𝑎, 𝑏) olur. 

Sonuç: Aşağıdaki durumların geçerliliğini ispat edelim. 

1) 𝑚 ∈ ℤ olmak üzere (𝑚𝑎, 𝑚𝑏) = |𝑚|(𝑎, 𝑏) olur. 

2) (𝑎, 𝑏) = 𝑑 olmak üzere (
𝑎

𝑑
,

𝑏

𝑑
 ) = 1 olur.  

3) (𝑎, 𝑏) = (𝑎 + 𝑐𝑏, 𝑏)  

4) (𝑎, 𝑏) = 1 ise (𝑏 − 𝑎, 𝑏) = 1 elde edilir. 

5) (𝑎, 𝑏) = 1 ve (𝑎, 𝑐) = 1 ise (𝑎, 𝑏𝑐) = 1 elde edilir. 

6) (𝑎, 𝑏) = 1 ve 𝑐|(𝑎 + 𝑏) ise (𝑎, 𝑐) = (𝑏, 𝑐) = 1 elde edilir. 

7) (𝑎, 𝑏) = 1, 𝑑|𝑎𝑐 ve 𝑑|𝑏𝑐 ise 𝑑|𝑐 olur. 

8) (𝑎, 𝑏) = 1 ise (𝑎𝑐, 𝑏) = (𝑐, 𝑏) olur. 

İspat:  

1) (𝑎, 𝑏) = 𝑑 ve 𝑒 = (𝑚𝑎, 𝑚𝑏) olsun. 𝑒 = |𝑚|𝑑 olduğunu 

göstermeliyiz. 𝑑 = 𝑎𝑝 + 𝑏𝑞 yazılabilir. Eşitliği 𝑚 sayısıyla 

genişletelim. 𝑚𝑑 = 𝑚𝑎𝑝 + 𝑚𝑏𝑞 olur. Bu eşitlikten 𝑚𝑑 hem 𝑚𝑎 hem 

de 𝑚𝑏 değerlerini böleceğinden 𝑚𝑑|𝑒 elde edilir. Ayrıca, 𝑒|𝑚𝑎 ve 

𝑒|𝑚𝑏 olduğundan 𝑒|𝑚𝑑 sonucuna ulaşılır. Buradan |𝑒| = |𝑚𝑑| veya 

𝑒 = |𝑚|𝑑 elde edilir. 

2) 𝑒 = (
𝑎

𝑑
,

𝑏

𝑑
) = 1 olacak şekilde pozitif bir tam sayının olduğunu 

kabul edelim. Kabulümüzden 𝑒|
𝑎

𝑑
 ve 𝑒|

𝑏

𝑑
 yazılabilir. Buradan(𝑘1, 𝑘2) =

1 olmak üzere 
𝑎

𝑑
= 𝑒𝑘1 ve 

𝑏

𝑑
= 𝑒𝑘2 eşitlikleri elde edilir. 𝑎 = 𝑑𝑒𝑘1 ve 

𝑏 = 𝑑𝑒𝑘2 eşitliklerine ulaşılır. 𝑒 = 1 ve (𝑘1, 𝑘2) = 1 

varsayımlarımızdan 𝑒 = (
𝑎

𝑑
,

𝑏

𝑑
) = 1 elde edilir. 

3) (𝑎, 𝑏) = 𝑑 ve (𝑎 + 𝑐𝑏, 𝑏) = 𝑒 olsun. 𝑑|𝑎, 𝑑|𝑏 ve lineerlik 

özelliğinden 𝑑|𝑎 + 𝑏𝑐 olacaktır. Bu durumda 𝑑|𝑒 elde edilir. 𝑒|𝑏 ve 

𝑒|𝑎 + 𝑏𝑐 durumundan 𝑒|𝑎 + 𝑏𝑐 − 𝑏𝑐 yazılabilir. Bu durumda da 𝑒|𝑑 

elde edilir. 𝑑|𝑒 ve 𝑒|𝑑 durumlarından 𝑑 = 𝑒 sonucuna ulaşılır. (𝑎, 𝑏) =

(𝑎 + 𝑐𝑏, 𝑏) elde edilir. 



29 
 

4) 𝑎 ve 𝑏 pozitif tam sayılarının her ortak böleni 𝑑 tam sayısıysa 

(𝑏 − 𝑎) ve 𝑎 sayılarının veya (𝑎 − 𝑏) ve 𝑏 sayılarının da her ortak 

böleni 𝑑 tam sayısı olacaktır. Bu yüzden (𝑎, 𝑏) = 1 ise (𝑏 − 𝑎, 𝑏) = 1 

elde edilir. 

5) (𝑎, 𝑏) = 1 ve (𝑎, 𝑐) = 1 ise lineerlik özelliğinden 1 = 𝑎𝑚 +

𝑏𝑛 = 𝑎𝑝 + 𝑐𝑞 olacak şekilde en az birer tane 𝑚, 𝑛, 𝑝 ve 𝑞 tam sayıları 

mevcuttur.  

1 ∙ 1 = (𝑎𝑚 + 𝑏𝑛)(𝑎𝑝 + 𝑐𝑞)  

1 = 𝑎(𝑎𝑚𝑛 + 𝑏𝑛𝑝 + 𝑎𝑚𝑝) + 𝑏𝑐𝑛𝑝)  

1 = 𝑎𝑘1 + 𝑏𝑐𝑘2  

işlemleri sonucunda (𝑎, 𝑏𝑐) = 1 elde edilir. 

6) (𝑎, 𝑏) = 1 ve lineerlik özelliğinden 1 = 𝑎𝑚 + 𝑏𝑛 yazılabilir.  

𝑐|(𝑎 + 𝑏) ise en az bir tane 𝑝 tam sayısı için 𝑐𝑝 = 𝑎 + 𝑏 oluşturulabilir. 

Bu eşitlikten 𝑐𝑝 − 𝑏 = 𝑎 değeri kullanılarak, 

1 = (𝑐𝑝 − 𝑏)𝑚 + 𝑏𝑛 

1 = 𝑐𝑝𝑚 − 𝑏𝑚 + 𝑏𝑛 

1 = 𝑐𝑝𝑚 + 𝑏(𝑛 − 𝑚) = 𝑐𝑘1 + 𝑏𝑘2 

(𝑐, 𝑏) = 1 elde edilir. Benzer yöntemle (𝑐, 𝑎) = 1 eşitliği de bulunur. 

7) (𝑎, 𝑏) = 1 ve lineerlik özelliğinden 1 = 𝑎𝑚 + 𝑏𝑛 yazılabilir. 

Eşitliğin her iki tarafı 𝑐 tam sayısıyla çarpılırsa 𝑐 = 𝑐𝑎𝑚 + 𝑐𝑏𝑛 elde 

edilir. 𝑑|𝑎𝑐 ve 𝑑|𝑏𝑐 ise 𝑑|𝑐 elde edilir.  

8)  (𝑐, 𝑏) = 𝑑 olmak üzere 𝑑|𝑎𝑏 ve ayrıca 𝑘|𝑎𝑐 ve 𝑘|𝑏 olması 

durumunda 𝑘|𝑑 olduğunu göstermeliyiz. 𝑑|𝑐 olduğundan 𝑐 = 𝑑𝑛 

olacaktır, bu durumda 𝑑𝑛𝑎 = 𝑐𝑎 olacağından 𝑑|𝑐𝑎 elde edilecektir. 

Lineer olma özelliğinden 𝑑 = 𝑎𝑢 + 𝑐𝑣 yazılabilir. 𝑘|𝑎𝑐 ve 𝑘|𝑏 

kabulümüzden 𝑘𝑟 = 𝑎𝑐 ve 𝑘𝑛 = 𝑏 olacaktır. 𝑑 = 𝑐𝑢 + 𝑘𝑛𝑣 elde edilir. 

(𝑎, 𝑏) = 1 eşitliğinden 1 = 𝑎𝑝 + 𝑏𝑞 ve 𝑐 = 𝑐𝑎𝑝 + 𝑐𝑏𝑞 yazılabilir.  

𝑑 = (𝑎𝑐𝑝 + 𝑏𝑞𝑐)𝑥 + 𝑘𝑛𝑦   

𝑑 = 𝑎𝑥𝑝𝑐 + 𝑏𝑞𝑐𝑥 + 𝑘𝑛𝑦  
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𝑑 = 𝑘𝑟𝑝𝑥 + 𝑘𝑛𝑞𝑐𝑥 + 𝑘𝑛𝑦  

𝑑 = 𝑘(𝑟𝑝𝑥 + 𝑛𝑞𝑐𝑥 + 𝑛𝑦)  

𝑑|𝑘 elde edilir ki bu da istenendir. 

Soru: (𝑎, 𝑏) = 1 ve 𝑐|𝑎 olduğunda (𝑏, 𝑐) = 1 olacağını gösteriniz. 

 Örnek: 𝑎|𝑏𝑐 olduğunda 𝑎|(𝑎, 𝑏)(𝑎, 𝑐) olacağını gösterelim. 

Çözüm: (𝑎, 𝑏) = 𝑑 ve (𝑎, 𝑐) = 𝑒 olsun. 𝑑 = 𝑎𝑚 + 𝑏𝑛 ve ve 𝑒 = 𝑎𝑝 + 𝑏𝑞 

eşitliklerini yazabiliriz.  

𝑑 ∙ 𝑒 = (𝑎𝑚 + 𝑏𝑛)(𝑎𝑝 + 𝑐𝑞)  

         = 𝑎2𝑚𝑝 + 𝑎𝑐𝑚𝑝 + 𝑏𝑎𝑛𝑝 + 𝑏𝑐𝑛𝑞  

        = 𝑎(𝑎𝑚𝑝 + 𝑐𝑚𝑝 + 𝑏𝑛𝑝) + (𝑏𝑐)𝑛𝑞  

𝑎|𝑏𝑐 eşitliği göz önüne alınarak 𝑎|𝑑𝑒 elde edilir. Bu durum da bize 

𝑎|(𝑎, 𝑏)(𝑎, 𝑐) olacağını gösterir. 

Soru: (𝑎, 𝑏) = 1 olduğunda (2𝑎 + 𝑏, 𝑎 − 2𝑏) = 1 veya (2𝑎 + 𝑏, 𝑎 −

2𝑏) = 3 olacağını gösteriniz. 

Soru: 𝑎 ve 𝑏 ikisi de sıfırdan farklı tam sayı olmak üzere, (𝑎, 𝑏) =

(−𝑎, 𝑏) = (𝑎, −𝑏) = (−𝑎, −𝑏) olduğunu gösteriniz. 

 Teorem: 𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑟 sıfırdan farklı tam sayılar olmak 

üzere, (𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑟) = ((𝑏1, 𝑏2, 𝑏3, … 𝑏𝑟−1), 𝑏𝑟) olur. 

İspat: (𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑟) = 𝑑 ve ((𝑏1, 𝑏2, 𝑏3, … 𝑏𝑟−1), 𝑏𝑟) = 𝑒 olsun. (i=1, 

2, 3, … , r) olmak üzere 𝑑|𝑏𝑖 olduğundan, (i=1, 2, 3, … , r-1) olmak 

üzere 𝑑|𝑏𝑖  olacağı açıktır. Bu durumda d|e elde edilir. Benzer şekilde 

e|d olduğu da gösterilir. Sonuçta d=e olacaktır. 

Tam Sayılarda Modül 

 Tanım: Herhangi bir kümenin iki elemanının toplamı ve farkı 

yine o kümenin elemanı oluyorsa bu yapıya modül denir. 𝑚, 𝑛 ∈ 𝑆 

durumunda (𝑚 ∓ 𝑛) ∈ 𝑆 olma durumu modül kavramıyla ifade 
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edilmektedir. Bütün sayı kümelerinin modülü bulunmaktadır. Tam 

sayıların modülü üzerinden işlemler gerçekleştirilecektir. 𝑆 = {𝑠 =

𝑎𝑥 + 𝑏𝑦: 𝑎, 𝑏 ∈ 𝑆; 𝑥, 𝑦 ∈  ℤ} kümesi bir modül olarak ifade 

edilecektir. 

Teorem: Sıfır modülü hariç 𝑆 kümesinin elemanları bir pozitif 

tam sayının katlarını oluşturur. 

İspat: 𝑆 kümesinin en küçük pozitif tam sayısının 𝑑 olduğunu kabul 

edelim. 𝑑 tam sayısının bütün katları; 2𝑑 = 𝑑 + 𝑑, 3𝑑 = 2𝑑 + 𝑑, … 𝑆 

kümesine aittir. 𝑆 kümesinin elemanlarının yalnızca bu sayılardan 

oluştuğunu göstermeliyiz. 𝑛 ∈ 𝑆; 𝑘, 𝑐 ∈  ℤ olmak üzere, 𝑛 = 𝑑𝑘 + 𝑐, 

0 ≤ 𝑐 < 𝑑 yazılabilir. 𝑑 ∈ 𝑆 olduğundan 𝑑𝑘 ∈ 𝑆 olacaktır. 𝑛 ∈ 𝑆 

olduğundan (𝑛 − 𝑑𝑘) ∈ 𝑆 olacaktır. 𝑐 ∈ 𝑆 olacaktır, 𝑐 < 𝑑 ve 𝑑 

elemanı 𝑆 kümesinin en küçük pozitif elemanı olduğundan 𝑐 = 0 

olmak zorundadır. Bu durumda istenilen gerçekleşecektir. 

Teorem: 𝑆 = {𝑠 = 𝑎𝑥 + 𝑏𝑦: 𝑎, 𝑏 ∈ 𝑆; 𝑥, 𝑦 ∈  ℤ} modülü 𝑑 =

(𝑎, 𝑏) sayısının bütün tam katlarının da bir kümesidir. 

İspat: Önceki teoremden 𝑆 kümesi pozitif 𝑘 tam sayılarının tam 

katlarının bir kümesidir. Dolayısıyla k bu kümenin bütün elemanlarını 

böler, 𝑘|𝑎 ve 𝑘|𝑏 olacaktır. Bu durumda 𝑘 ≤ 𝑑 olacaktır. Bütün 𝑥 ve 𝑦 

tam sayıları için 𝑑|𝑎𝑥 + 𝑏𝑦 olur. 𝑑, 𝑆 kümesinin bütün elemanlarını 

böler ve 𝑑|𝑘 olacaktır. Bu durumda 𝑑 ≤ 𝑘 olacaktır. Buradan 𝑑 = 𝑘 

olduğu görülür. 

Teorem: 𝑎𝑥 + 𝑏𝑦 = 𝑛 denkleminin 𝑥 ve 𝑦 tam sayılarına göre 

çözülebilir olması için gerek ve yeter şart 𝑑 = (𝑎, 𝑏)|𝑛 olmasıdır. 

İspat: 𝑑|𝑎 ve 𝑑|𝑏 olması durumundan 𝑑|𝑎𝑥 + 𝑏𝑦 ifadesinden 𝑑|𝑛 

olacaktır. 𝑑|𝑛 olduğunda 𝑑|𝑎𝑥 + 𝑏𝑦 olup, 𝑑|𝑎𝑥 ve 𝑑|𝑏𝑦 olacaktır. 

Buradan da 𝑥 ve 𝑦 çözülebilirdir sonuca ulaşılacaktır. 
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En Küçük Ortak Kat 

Sıfırdan farklı 𝑏 ve 𝑐 tam sayılarının ortak katlarının kümesi 

her zaman kendilerini de içeren sonsuz bir tam sayılar kümesidir. 

Sıfırdan farklı herhangi bir tam sayının sonsuz sayıda katları 

olacağından, b ve c sayılarının sonsuz sayıda ortak katları vardır.  

Tanım: 𝑎|𝑚 ve 𝑏|𝑚 şartlarını sağlayan 𝑚 tam sayısına 𝑎 ve 𝑏 

tam sayılarının bir ortak katı denir. 𝑎 ve 𝑏 tam sayılarının 𝑚 gibi ortak 

katlarının en küçük olanına “en küçük ortak kat” denir. [𝑎, 𝑏] = 𝑚 

veya 𝐸𝐾𝑂𝐾(𝑎, 𝑏) = 𝑚 şeklinde gösterilir. 

Tanım: 𝑎 ve 𝑏 tam sayılarının en küçük ortak katı 𝑚 olmak 

üzere, 

i. 𝑎|𝑏 ve 𝑏|𝑚,  

ii. Eğer 𝑎|𝑐 ve 𝑏|𝑐 ise 𝑐 ≥ 𝑚 durumları geçerlidir. 

  Örnek:  12 ve 18 tam sayılarının ortak katlarını bulalım ve bu 

ortak kat sayıların en küçüğünü belirleyelim. 

Çözüm: 12 tam sayısının katlarının kümesi: 

𝐾12 = {12, 24, 36, 48, 60, 72, 84, 96, 108, 120, … }  

18 tam sayısının katlarının kümesi: 

𝐾18 = {18, 36, 54, 72, 90, 108, 126, 144, 162, 180, … }  

şeklinde olacaktır. 12 ve 18 tam sayılarının ortak katlarının kümesi: 

𝐾12 ∩ 𝐾18 = {36, 72, 108, … } şeklinde olur ve bu kümenin en küçük 

elemanı 36 tam sayısı olacaktır. Dolayısıyla [12,18] = 36 veya 

𝐸𝐾𝑂𝐾(12,18) = 36 şeklinde gösterilecektir. 

Not: Sıfırdan farklı 𝑏1, 𝑏2, … , 𝑏𝑛 tam sayılarının en küçük ortak katı 

[𝑏1, 𝑏2, … , 𝑏𝑛] = 𝑚 şeklinde gösterilir. 

Soru: 10, 15 ve 25 tam sayılarının en küçük ortak katını bulunuz. 
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Teorem: [𝑎, 𝑏] = 𝑚 olması için gerek ve yeter şart 𝑚 > 0, 𝑎|𝑚, 

𝑏|𝑚 ve 𝑎 ile 𝑏 tam sayılarının her 𝑛 ortak katı için 𝑚|𝑛 olmasıdır. 

İspat: [𝑎, 𝑏] = 𝑚 ve 𝑛, 𝑎 ile 𝑏 tam sayılarının herhangi bir ortak katı 

olsun. Bu durumda 𝑚 ≤ 𝑛 olacaktır. 𝑚 = 𝑛 olursa 𝑚|𝑛 olacaktır. Eğer 

𝑚 < 𝑛 olursa bölme algoritmasından 𝑛 = 𝑚𝑞 + 𝑟, 0 ≤ 𝑟 < 𝑚 olacak 

şekilde 𝑞 ve 𝑟 tam sayıları vardır. Bu durumda 𝑟 = 𝑛 − 𝑞𝑚 olur ve 

bölünebilmenin lineerlik özelliğinden 𝑟, 𝑎 ve 𝑏 tam sayılarının bir 

ortak katıdır. 𝑟 ≠ 0 durumu 𝑚 tam sayısının tanımıyla çelişir. 𝑚 tam 

sayısı en küçük ortak kat olduğundan 𝑟 = 0 olmalıdır ki 𝑚|𝑛 sonucu 

elde edilir. 𝑚 > 0, 𝑎|𝑚, 𝑏|𝑚 ve 𝑎 ile 𝑏 tam sayılarının her 𝑛 ortak katı 

için 𝑚|𝑛 olsun. Bölünebilme özelliğinden 𝑚 ≤ |𝑛| olur ki 𝑚 tam sayısı 

ortak katların en küçüğüdür. 

Teorem: 𝑎 ve 𝑏 pozitif tam sayı olmak üzere [𝑎, 𝑏] =
𝑎∙𝑏

(𝑎,𝑏)
 

eşitliği sağlanır. 

İspat: 𝑝 =
𝑎∙𝑏

(𝑎,𝑏)
 tam sayısını inceleyelim. (𝑎, 𝑏)|𝑏 olduğundan 𝑝, 𝑎 tam 

sayısının bir tam katı olacaktır. 𝑝, aynı düşünceyle 𝑏 tam sayısının da 

bir tam katı olacaktır. Bu durumda 𝑝, 𝑎 ve 𝑏 tam sayılarının bir ortak 

katıdır. 𝑞 = [𝑎, 𝑏] olmak üzere 
𝑞

𝑝
=

𝑞(𝑎,𝑏)

𝑎∙𝑏
 sayısını ele alalım. (𝑎, 𝑏) =

𝑎𝑥 + 𝑏𝑦 lineerlik özelliğinden yazılabilir. Yukarıdaki eşitlikte bu 

ifadeyi yerine yazarsak 
𝑞

𝑝
=

𝑞(𝑎𝑥+𝑏𝑦)

𝑎∙𝑏
=

𝑞𝑥

𝑏
+

𝑞𝑦

𝑎
 olacaktır. 

𝑞

𝑎
 ve 

𝑞

𝑏
 birer 

tam sayıdır. 𝑝, 𝑞 tam sayısını böler ve 𝑝, 𝑎 ve 𝑏 tam sayılarının en 

küçük ortak katı olur. 
1

𝑝
=

𝑎𝑥+𝑏𝑦

𝑎∙𝑏
 ifadesinden 𝑝 =

𝑎∙𝑏

(𝑎,𝑏)
 elde edilir. 

Teorem: 𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑟 sıfırdan farklı tam sayılar olmak 

üzere, [𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑟] = [[𝑏1, 𝑏2, 𝑏3, … 𝑏𝑟−1], 𝑏𝑟] olur. 

İspat: [𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑟] = 𝑑 ve [[𝑏1, 𝑏2, 𝑏3, … 𝑏𝑟−1], 𝑏𝑟] = 𝑒 olsun. 𝑖 =

(1, 2, 3, … , 𝑟) olmak üzere 𝑏𝑖|𝑑 olduğundan, 𝑖 = (1, 2, 3, … , 𝑟 − 1) 
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olmak üzere 𝑏𝑖|𝑑 olacağı açıktır. Bu durumda 𝑑|𝑒 elde edilir. Benzer 

şekilde 𝑒|𝑑 olduğu da gösterilir. Sonuçta 𝑑 = 𝑒 olacaktır. 

Soru: (𝑎, 𝑏) = [𝑎, 𝑏] olması için gerek ve yeter şartın (𝑎, 𝑏) = 1 olması 

gerektiğini gösteriniz. 

Sonuç: Aşağıdaki durumların geçerliliğini ispat edelim. 

1) 𝑎 ve 𝑏 sıfırdan farklı tam sayılar olmak üzere (𝑎, 𝑏) = [𝑎, 𝑏] 

olması için gerek ve yeter şart 𝑎 = ∓𝑏 olmasıdır. 

2) 𝑘 > 0 olmak üzere [𝑘𝑎, 𝑘𝑎] = 𝑘[𝑎, 𝑏] olur. 

3) 𝑝, 𝑎 ve 𝑏 tam sayılarının ortak bir çarpanıysa [𝑎, 𝑏]|𝑝 olur.  

İspat:  

1) (𝑎, 𝑏) = [𝑎, 𝑏] = 𝑑 olsun. En büyük ortak bölen ve en küçük 

ortak kat özelliğinden 𝑑 = 𝑎 ∙ 𝑏 yazılabilir. 𝑑|𝑎 olduğundan en az bir 𝑥 

tam sayısı için 𝑑 ∙ 𝑥 = 𝑎 elde edilebilir. 𝑑2 = 𝑑𝑥𝑏 sonucu elde edilir. 

Bu eşitlik düzenlendiğinde 𝑑 = 𝑏𝑥 elde edilir, bu da bizi 𝑏|𝑑 sonucuna 

götürür. Ayrıca 𝑑|𝑏 olduğundan 𝑑 = ∓𝑏 sonucuna ulaşılır. Benzer 

şekilde 𝑑 = ∓𝑎 sonucuna da ulaşılır. Böylece 𝑎 = ∓𝑏 elde edilir. Yeter 

şart olarak 𝑑 = ∓𝑎 olsun. Bu durum bizi 𝑎|𝑏 ve 𝑏|𝑎 durumuna 

götürür. Böylece (𝑎, 𝑏) = [𝑎, 𝑏] olacağı görülür. 

2) (𝑘𝑎, 𝑘𝑏)[𝑘𝑎, 𝑘𝑏] = 𝑘2𝑎𝑏 eşitliği en büyük ortak bölen ve en 

küçük ortak kat özelliğinden yazılabilir.   

𝑘(𝑎, 𝑏)[𝑘𝑎, 𝑘𝑏] = 𝑘2𝑎𝑏  

(𝑎, 𝑏)[𝑘𝑎, 𝑘𝑏] = 𝑘𝑎𝑏 

(𝑎, 𝑏)[𝑘𝑎, 𝑘𝑏] = 𝑘(𝑎, 𝑏)[𝑎, 𝑏]  

[𝑘𝑎, 𝑘𝑏] = 𝑘[𝑎, 𝑏] elde edilir. 

3) [𝑎, 𝑏] = 𝑚 olsun. Bölme algoritmasına göre 𝑛 = 𝑚𝑞 + 𝑟, 0 ≤

𝑟 < 𝑚 yazılabilir. Eğer 𝑟 = 0 olursa 𝑚|𝑛 olacaktır. Eğer 0 < 𝑟 < 𝑚 

olursa 𝑟 = 𝑛 − 𝑚𝑞 elde edilir. 𝑚 ve 𝑛 tam sayıları 𝑎 ve 𝑏 tam 

sayılarının çarpımı olduğundan  𝑟 = 𝑎𝑥 − 𝑎𝑦𝑞 = 𝑎(𝑥 − 𝑦𝑞) ve 𝑟 =
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𝑏𝑢 − 𝑏𝑣𝑞 = 𝑏(𝑢 − 𝑣𝑞) yazılabilir. Bu durum bize 𝑟 tam sayısının 𝑎 ve 

𝑏 tam sayılarının çarpımı olduğunu gösterir. Bu sonuç [𝑎, 𝑏] = 𝑚 

olmasıyla çelişir. 𝑟 < 𝑚 olması mümkün değildir. Bu durum iddiamızı 

kanıtlamaktadır. 

Soru: Sıfırdan farklı 𝑎 ve 𝑏 tam sayıları için aşağıdaki durumların 

sırasıyla gerçeklendiğini gösteriniz. 

1. (𝑎, 𝑏) = |𝑎|, 

2. 𝑎|𝑏, 

3. [𝑎, 𝑏] = |𝑏|. 

Lineer Diophantine Eşitlikleri 

 Adını antik yunan matematikçilerinden Diophantus’dan (MS 

214-298) alan, değişkenleri ve katsayıları tam sayılar olan 

denklemlerdir. 𝑎 ve 𝑏 ikisi de aynı anda sıfır olmayan tam sayılar, 𝑐, 𝑥 

ve 𝑦 tam sayılar olmak üzere, 𝑎𝑥 + 𝑏𝑦 = 𝑐 şeklindeki denklemlere 

Diophantine denklemleri denir.  

Teorem: 𝑎𝑥 + 𝑏𝑦 = 𝑐 Diophantine denkleminin çözümünün 

olması için gerek ve yeter şart (𝑎, 𝑏) = 𝑑 olmak üzere 𝑑|𝑐 olmasıdır. 

Ayrıca 𝑥0 ve 𝑦0 bu denklemin herhangi bir çözümü, 𝑡 ∈ ℤ olmak üzere 

denklemin bütün çözümleri 

𝑥 = 𝑥0 + (
𝑏

𝑑
) 𝑡 ve 𝑦 = 𝑦0 + (

𝑎

𝑑
) 𝑡 

şeklindedir. 

İspat: Teoremin ikinci kısmı için 𝑥′ ve 𝑦′ verilen denklemin 

herhangi bir çözümü olsun. 𝑎𝑥0 + 𝑏𝑦0 = 𝑐 = 𝑎𝑥′ + 𝑏𝑦′ olsun. Bu 

eşitlikten 𝑎(𝑥′ − 𝑥0) = 𝑏(𝑦0 − 𝑦′) elde edilir. 𝑎 = 𝑑𝑟 ve 𝑏 = 𝑑𝑠 

eşitliğini sağlayan 𝑟 ve 𝑠 aralarında asal sayıları vardır. Önceki eşitlik 

yeniden düzenlendiğinde 𝑟(𝑥′ − 𝑥0) = 𝑠(𝑦0 − 𝑦′) elde edilir. Bu 

durumda 𝑟|𝑠(𝑦0 − 𝑦′) olur. (r, s)=1 olduğundan 𝑟|(𝑦0 − 𝑦′) olacaktır. 

Bu durumda bazı 𝑡 gibi tam sayılar için (𝑦0 − 𝑦′) = 𝑟𝑡 eşitliğine 
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ulaşılır. Benzer şekilde (𝑥′ − 𝑥0) = 𝑠𝑡 elde edilir. Elde edilen 

değerlerden   

𝑥′ = 𝑥0 + 𝑠𝑡 = 𝑥0 + (
𝑏

𝑑
) 𝑡 ve 𝑦′ = 𝑦0 − 𝑟𝑡 = 𝑦0 − (

𝑎

𝑑
) 𝑡 

sonuçlarına ulaşılır.  

𝑎𝑥′ + 𝑏𝑦′ = 𝑎 [𝑥0 + (
𝑏

𝑑
) 𝑡] + 𝑏 [𝑦0 − (

𝑎

𝑑
) 𝑡]  

                   = 𝑎𝑥0 + 𝑏𝑦0 + [(
𝑎𝑏

𝑑
) − (

𝑎𝑏

𝑑
)] 𝑡 

                    = 𝑐 + 0 ∙ 𝑡  

                    = 𝑐 elde edilir. 

Örnek: 172𝑥 + 20𝑦 = 1000 lineer Diophantine denkleminin 

çözüm kümesini bulalım. 

Çözüm: Öklid algoritması uygulayarak 172 ve 20 sayılarının en büyük 

ortak bölenini bulalım. 

172 = 8 ∙ 20 + 12  

20 = 1 ∙ 12 + 8  

12 = 1 ∙ 8 + 4  

8 = 2 ∙ 4 + 0  

(172, 20) = 4 olur. 4|1000 olduğundan bu lineer Diophantine 

denkleminin çözümü vardır. Yukarıdaki eşitlikleri sondan başlayarak, 

art arda uygulayarak kalanları ortadan kaldırdığımızda, 

4 = 12 − 8  

   = 12 − (20 − 12)  

   = 2 ∙ 12 − 20  

   = 2 ∙ (172 − 8 ∙ 20) − 20  

   = 2 ∙ 172 + (−17) ∙ 20  
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4 ∙ 250 = 500 ∙ 172 + (−4250) ∙ 20  

𝑥0 = 500 ve 𝑦0 = (−4250) değerlerini elde ederiz. Diophantine 

denkleminin bütün çözümleri de 𝑡 gibi tam sayılar için 

𝑥 = 500 + (
20

4
) 𝑡 = 500 + 5𝑡 

𝑦 = −4250 − (
172

4
) 𝑡 = −4250 − 43𝑡 

şeklinde olacaktır.  

Not: (𝑎, 𝑏) = 1, 𝑥0 ve 𝑦0, 𝑎𝑥 + 𝑏𝑦 = 𝑐 lineer Diophantine denkleminin 

özel çözümüyse bütün çözümler 𝑡 gibi tam sayılar için 

𝑥 = 𝑥0 + 𝑏𝑡 ve 𝑦 = 𝑦0 − 𝑎𝑡 

şeklinde olacaktır. 

Soru: 6𝑥 + 51𝑦 = 21 lineer Diophantine denkleminin genel 

çözümünü bulunuz. 

Soru: Bir kişi 51.000 lira tutarında eğitim çeki satın almak 

istemektedir. 2000 ve 5000 lira değerindeki çeklerin her birinden kaç 

tane satın alınması gerekmektedir. 
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UYGULAMALAR 

1) (𝑎 − 1) sayısının (𝑎𝑛 − 1) sayısının bir böleni olduğunu gösteriniz. 

2) 𝑐|𝑒 ve 𝑑|𝑒 olmak üzere eğer (𝑐, 𝑑) = 1 ise 𝑐𝑑|𝑒 olduğunu gösteriniz.  

3) 𝑎 bir tam sayı olmak üzere, 𝑎𝑛+1 − (𝑎 − 1)𝑛 − 𝑎 sayısının (𝑎 − 1)2 

sayısıyla bölünebildiğini gösteriniz. 

4) 𝑑|𝑎𝑐 ve 𝑑|𝑏𝑐 ise 𝑑|𝑐 olduğunu gösteriniz. 

5) Herhangi tek tam sayının karesinin 8𝑘 + 1 formatında olduğunu 

gösteriniz. 

6) 𝑎, 𝑏, 𝑐 tam sayılar olmak üzere, (𝑎, 𝑏𝑐) = 1 olması için gerek ve 

yeter şartın(𝑎, 𝑏) = (𝑎, 𝑐) = 1 olması gerektiğini gösteriniz. 

7) 𝑎|(𝑏 + 𝑐) olması durumunda 𝑎|𝑏 veya 𝑎|𝑐 olup-olamayacağını 

gösteriniz. 

8) Ardışık üç tam sayıdan birinin 3 sayısıyla bölünebildiğini 

gösteriniz. 

9) 𝑑|𝑛 olması durumunda (2𝑑 − 1)|(2𝑛 − 1) olacağını gösteriniz. 

10)  𝑎 tek tam sayı olmak üzere, 24|𝑎(𝑎2 − 1)olacağını gösteriniz. 

11) (𝑎, 𝑏) = 1 olması durumunda (𝑎 + 𝑏, 𝑎𝑏) = 1 olacağını gösteriniz. 

12) 𝑎, 𝑏 tam sayıları aralarında asal olmak üzere, (𝑎 + 𝑏, 𝑎2 + 𝑏2) = 1 

veya (𝑎 + 𝑏, 𝑎2 + 𝑏2) = 2 olacağını gösteriniz. 

13) 𝑛 ≥ 1, 𝑎, 𝑏 pozitif tam sayı olmak üzere 𝑎𝑛|𝑏𝑛 olursa 𝑎|𝑏 olacağını 

gösteriniz. 

14) 𝑎 ve 𝑏 pozitif tam sayı olmak üzere (𝑎, 𝑏)|[𝑎, 𝑏] olduğunu 

gösteriniz. 

15) 𝑎|𝑏𝑐 olması durumunda 𝑎|(𝑎, 𝑏)(𝑎, 𝑐) olacağını gösteriniz. 

16) 𝑛 ∈ ℕ olmak üzere 2𝑛(2𝑛 + 1)(2𝑛 + 2) sayısını bölen en büyük 

doğal sayıyı bulunuz. 

17) 21𝑥 − 14𝑦 = 49 lineer Diophantine denklemini sağlayan bir değer 

bulunuz. 
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18)  𝑎|𝑏 olması durumunda (−𝑎)|𝑏, 𝑎|(−𝑏) ve (−𝑎)|(−𝑏) olacağını 

gösteriniz. 

19) 𝑎 ve 𝑏 sıfırdan farklı tam sayılar olmak üzere, 

i. (𝑎, 𝑏) = [𝑎, 𝑏] olması için gerek ve yeter şart 𝑎 = ±𝑏 

olmalıdır. 

ii. 𝑚, 𝑎 ve 𝑏 tam sayılarının bir ortak katıysa [𝑘𝑎, 𝑘𝑏]|𝑚. 

20) Ardışık 4 tam sayının çarpımının 1 fazlasının bir tam kare sayıya 

eşit olacağını gösteriniz. 
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3. BÖLÜM 

ASAL SAYILAR 

Pozitif tam sayıların yukarı bölümlerde yer alan özelliklerine, 

birbiriyle çarpılarak veya birbirlerine bölünerek elde edilmesi özelliği 

de eklenebilir. 2 ve 3 sayılarının çarpımından 6, 1 ve 7 sayılarının 

çarpımından 7 sayısının elde edilebilirliği örnek verilebilir. 11 

sayısının 1 ve 11 sayılarına, 10 sayısının 1, 2, 5 ve 10 sayılarına tam 

bölünebilirliği örnek verilebilir. Ayrıca 1 tam sayısından büyük a gibi 

tam sayıların ∓1 ve ∓𝑎 tam sayılarına tam bölünebildiğini de 

yukarıdaki bilgilerimizden biliyoruz. Burada karşımıza, herhangi a 

gibi bir tam sayının ∓1 ve ∓𝑎 tam sayı bölenlerinden başka tam sayı 

bölenlerinin olmadığı durumu ön plana çıkmaktadır. 

Asal sayı, yalnızca 1 ve kendisi olmak üzere iki çarpana sahip 

olan bir tam sayıdır. Başka bir deyişle, bir asal sayı yalnızca 1 ve 

kendisi tarafından tam bölünebilir. Bilinen en büyük asal sayı 

2136.279.841 − 1 sayısıdır; bu sayı ondalık tabanda yazıldığında 

41.024.320 basamağa sahiptir. Bu sayı, Great Internet Mersenne 

Prime Search (Büyük İnternet Mersenne Asal Sayı Araması) projesi 

kapsamında “Luke Duran”t tarafından keşfedilmiştir (31.12.2025). 

Öklid, en büyük asal sayının var olamayacağına dair bir ispat 

kaydetmiştir ve birçok matematikçi hala büyük asal sayılar aramaya 

devam etmektedir. 

Bazı araştırmacılar, şifreli mesajları karıştırmak ve çözmek 

için asal sayıları kullanmıştır. Bu erken şifreleme biçimi, internet 

güvenliğinin yolunu açmış ve asal sayıları elektronik ticaretin kalbine 

yerleştirmiştir. Bu tür şifrelemenin güvenliği, iki büyük asal sayının 

çarpımı olan büyük bileşik sayıların çarpanlarına ayrılmasının 

zorluğuna dayanmaktadır. 
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Tanım: 1 sayısından büyük, 1 ve kendine tam bölünen pozitif 

tam sayılara asal sayı veya asal denir.  

Tanım: 1 sayısından büyük, asal sayı olmayan tam sayılara da 

bileşik sayı denir. 

2, 3, 5, 7, 11, 13, 17 ve 19 ilk sekiz asal sayıya, 4, 6, 8, 9, 10, 12, 

14 ve 15 ilk sekiz bileşik sayıya örnektir. 

Asal sayılar üzerine pek çok çalışmalar yapılmaktadır. 

Matematiğin iç dünyasının dışında diğer disiplinlerde de asal sayıları 

bulmak mümkündür. Güvenlik, biyoloji, zooloji, ekonomi gibi 

alanların asal sayıları kullandığı görülmektedir.    

Teorem: 𝑝 asal sayı ve 𝑝|𝑎𝑏 ise 𝑝|𝑎 veya 𝑝|𝑏 olur. 

İspat: 𝑝 ∤ 𝑎 olsun. 𝑝 asal sayı olduğundan (𝑝, 𝑎) = 1 olacaktır. Bu 

durumda 𝑝𝑥 + 𝑎𝑦 = 1 yazılabilir. Eşitliğin her iki yanı 𝑏 tam sayısıyla 

çarpıldığında 𝑏𝑝𝑥 + 𝑏𝑎𝑦 = 𝑏 olacaktır. 𝑝|𝑏𝑝 ve 𝑝|𝑎𝑏 olduğundan 𝑝|𝑏 

elde edilecektir. 

 Teorem: 𝑝 asal sayı ve 𝑝|𝑏1𝑏2 … 𝑏𝑛 ise en az bir 𝑖 =

(1, 2, 3, … , 𝑛) için 𝑝|𝑏𝑖  olur. 

İspat: 𝑝|𝑏1𝑏2 … 𝑏𝑛 ise ya 𝑝|𝑏1 ya da 𝑝|𝑏2 … 𝑏𝑛 olacaktır. Benzer 

düşünceyle ya 𝑝|𝑏2 ya da 𝑝|𝑏3 … 𝑏𝑛 olacaktır. Bu düşünce sonlu 

adımda 𝑝|𝑏1𝑏2 … 𝑏𝑛 ise en az bir 𝑖 = (1, 2, 3, … , 𝑛) için 𝑝|𝑏𝑖  olura 

götürecektir. 

 Teorem: 𝑝, 𝑝1, 𝑝2, … , 𝑝𝑛 asal sayı ve 𝑝|𝑝1𝑝2 … 𝑝𝑛 ise en az bir 

𝑖 = (1, 2, 3, … , 𝑛) için 𝑝 = 𝑝𝑖  olur. 

İspat: 𝑝|𝑝1𝑝2 … 𝑝𝑛 olursa bazı 𝑖 değerleri için 𝑝|𝑝𝑖 olacaktır. Her 𝑖 

değeri için 𝑝 ve 𝑝𝑖  asal sayı olduğundan ya 𝑝 = 𝑝𝑖  ya da 𝑝 = 1 

olmalıdır. 𝑝 asal sayı olduğundan 𝑝 = 1 olamayacaktır. 

 Teorem: 1 sayısından büyük, herhangi pozitif bir tam sayı ya 

asal sayıdır ya da bileşik sayıdır. 
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İspat: Herhangi pozitif 𝑛 tam sayısı asal sayıysa istenendir. Asal sayı 

değilse 𝑛 tam sayısının 1 ile 𝑛 arasında kalan bir böleni vardır. Bu 

bölen sayıların en küçüğü 𝑚 ise 𝑚 tam sayısı da asal sayıdır. Gerçekten 

𝑚 asal sayı olmasaydı en az bir 𝑙 sayısı için 1 ≤ 𝑙 ≤ 𝑚, 𝑙|𝑚 olacaktı. 

Buradan 𝑙|𝑚, 𝑚|𝑛 durumlarından 𝑙|𝑛 olurdu ki bu da 𝑚 tam sayısının 

tanımıyla çelişirdi. Bu durum bizi 𝑚 tam sayısının asal sayı olma 

durumuna götürmektedir. O halde 𝑛 ya asal sayıdır ya da 𝑛 tam 

sayısından küçük 𝑝1 asal sayısıyla bölünebilir. Bu durumda 𝑛 = 𝑝1𝑛1, 

1 < 𝑛1 < 𝑛 olacaktır. Burada 𝑛1 asal sayıdır ki o zaman ispat 

bitecektir ya da 𝑛1 sayısından küçük bir 𝑝2 gibi bir asal sayıyla 

bölünecektir. Bu durumda 𝑛 = 𝑝1𝑛1 = 𝑝1𝑝2𝑛2, 1 < 𝑛2 < 𝑛1 < 𝑛 

olacaktır. Bu düşüncenin tekrar etmesiyle pozitif tam sayılardan 

oluşan 𝑛, 𝑛1, 𝑛2, … , 𝑛𝑘−1, …dizisine ulaşılacaktır. Bu dizi içinde iki 

durum düşünülebilir. İlk durumda uygun bir 𝑘 değeri için 𝑛𝑘−1 = 1 

vardır. Bu durum bizi dizinin sonlu olmasına götürecektir. İkinci 

durumda 𝑘 değeri ne olursa olsun 𝑛𝑘 > 1 olur ki dizi sonsuzdur. Bu 

durum hiçbir zaman mümkün olamayacaktır. Dizinin oluşturuluş 

durumuna göre 𝑛𝑘 = 𝑝𝑘+1𝑛𝑘+1 olup 𝑝𝑘+1 > 1 sayısından 𝑛𝑘 > 𝑛𝑘+1 

sayısı elde edilir. O halde,  𝑛1, 𝑛2, … , 𝑛𝑘−1, … dizisi azalan bir dizidir. İyi 

sıralama prensibine göre 𝑛𝑚 sayısı gibi bir en küçük elemana sahip 

olmalıdır. Bu nedenle dizi sonlu olamaz. Dizimiz sonlu olsaydı 𝑛𝑚 

sayısından sonra yukarıdaki uygulanan işlemle bir 𝑛𝑚+1 sayısı elde 

edilirdi ki dizide 𝑛𝑚 sayısından küçük bir pozitif tam sayı bulunmuş 

olurdu. Bu durumda 𝑛𝑚 sayısının tanımına aykırı bir durum olurdu. 

𝑛 > 1 olmak üzere herhangi bir 𝑛 tam sayısı, sonlu adımdan sonra 

𝑛𝑘 = 1 olacaktır. Yani 

𝑛 = 𝑝1𝑛1  

𝑛1 = 𝑝2𝑛2  

𝑛2 = 𝑝3𝑛3  
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   ⋮       ⋮  

𝑛𝑘−1 = 𝑝𝑘𝑛𝑘  

𝑛𝑘 = 1, eşitliklerinden 𝑛 = 𝑝1 ∙  𝑝2 ∙  𝑝3 ∙ … ∙ 𝑝𝑘 elde edilir. Burada 𝑝𝑖  

asal sayılarının birbirinden farklı olması gerekmez. Son haliyle 

𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑘 > 0 ve 𝑝1 < 𝑝2 < 𝑝3 < ⋯ < 𝑝𝑘 olmak üzere 𝑛 =

𝑝1
𝑎1𝑝2

𝑎2𝑝3
𝑎3 … 𝑝𝑘

𝑎𝑘  şeklinde yazılabilir ve 𝑛 tam sayısının bu şekilde 

yazılmasına, 𝑛 tam sayısının standart biçimi denir. 

 Teorem: (𝑎, 𝑏𝑖) = 1 olduğunda (𝑎, 𝑏1𝑏2 … 𝑏𝑛) = 1 olur. 

İspat: (𝑎, 𝑏1𝑏2 … 𝑏𝑛) = 𝑑 > 1 olsun. Bu durumda öyle bir 𝑝 asal sayısı 

için 𝑝|𝑑 olacaktır. Diğer taraftan 𝑑|𝑎, 𝑑|𝑏1𝑏2 … 𝑏𝑛 ve 𝑝|𝑑 olduğundan 

𝑝|𝑎 ve 𝑝|𝑏1𝑏2 … 𝑏𝑛 olur. Bazı 𝑖 değerleri için 𝑝|𝑏𝑖  olacağı aşikardır. 

Sonuçta 𝑝|𝑎 ve 𝑝|𝑑 için 𝑝|𝑏𝑖  elde edilir ki bu durum hipotezimizle 

çelişmektedir. 𝑑 = 1 olmak zorundadır bu da istenilendir. 

 Teorem:  𝑎|𝑐, 𝑏|𝑐 ve (𝑎, 𝑏) = 1 olduğunda 𝑎𝑏|𝑐 olur. 

İspat: 𝑎|𝑐 ve 𝑏|𝑐 olmasından dolayı 𝑐 = 𝑎𝑟 = 𝑏𝑠 olacak şekilde 𝑟 ve 𝑠 

tam sayıları vardır. 𝑏|𝑎𝑟 yazılabilir ama (𝑎, 𝑏) = 1 olduğundan 𝑏|𝑟 

olacağı görülür. Bu durumda tekrar 𝑟 = 𝑏𝑡 olacak şekilde 𝑡 tam 

sayısının varlığından bahsedilebilir. Son durumda 𝑐 = 𝑎𝑟 = 𝑎𝑏𝑡 

sonucuna ulaşılır. Bu da bizi 𝑎𝑏|𝑐 sonucuna götürecektir. 

 Teorem: 𝑚1, 𝑚2, … , 𝑚𝑛 ikişer ikişer aralarında asal sayı olmak 

üzere 𝑖 = (1, 2, 3, … , 𝑛) için 𝑚𝑖|𝑎 ise 𝑚 = 𝑚1𝑚2 … 𝑚𝑛 olduğunda 𝑚|𝑎 

olur. 

İspat: İspatı indüksiyon yöntemiyle yapalım. 𝑛 = 1 için 𝑚1|𝑎 ve 𝑚 =

𝑚1 olacağından 𝑚|𝑎 olur. 𝑛 = 𝑘 için ifadenin doğru olduğunu kabul 

edelim. Yani, 𝑚 = 𝑚1𝑚2 … 𝑚𝑘 olduğunda 𝑚|𝑎 olacaktır. 𝑛 = 𝑘 + 1 

için ifadenin doğruluğunu göstermeliyiz. 

(𝑚𝑖, 𝑚𝑗) = 1 olduğundan dolayı 𝑚′ = 𝑚1𝑚2 … 𝑚𝑘 olmak üzere 

(𝑚′, 𝑚𝑘+1) = 1 yazılabilir. Ayrıca 𝑚′|𝑎 olacağı da unutulmamalıdır. 
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Üstelik 𝑚𝑘+1|𝑎 olduğundan 𝑚′ ∙ 𝑚𝑘+1|𝑎 elde edilecektir. Bu durum 

bizi 𝑛 = 𝑘 + 1 için ifadenin 𝑚|𝑎 olacağı sonucuna götürecektir ki bu 

da istenilendir. 

Aritmetiğin Temel Teoremi 

 Asal sayılar başlığı altında gerçekleştirdiğimiz çalışmalar bizi 

sayılar konusunda ki gelişimimizin temel taşlarından birine 

götürmektedir. 1 sayısından büyük her tam sayı tek bir şekilde asal 

sayılara bölünebilmektedir. 

 Teorem: 𝑛 > 1 tam sayısının standart yazım biçimi tektir. 

Çarpanlarının yerleri değişikliği dışında 𝑛 tam sayısı asal sayıların 

çarpımı olarak tek türlü yazılabilmektedir. 

İspat: 𝑝 asal sayı olmak üzere 𝑝|𝑎𝑏𝑐 … 1 ise 𝑝|𝑎 veya 𝑝|𝑏 veya 𝑝|𝑐 veya 

⋯ 𝑝|1 olacaktır. Eğer 𝑎, 𝑏, 𝑐, … , 1 sayıları 1 sayısı hariç asal sayıysa 𝑝 

sayısı bunlardan biri olmak zorundadır. 

 𝑛 = 𝑝1
𝑎1𝑝2

𝑎2𝑝3
𝑎3 … 𝑝𝑘

𝑎𝑘 = 𝑞1
𝑏1𝑞2

𝑏2𝑞3
𝑏3 … 𝑞

𝑗

𝑏𝑗 olduğunu varsayalım. 

Her 𝑖 değeri için 𝑝𝑖|𝑞1
𝑏1𝑞2

𝑏2𝑞3
𝑏3 … 𝑞

𝑗

𝑏𝑗 olacağından her 𝑝 sayısı bir 𝑞 

sayısı olacaktır. Benzer şekilde her 𝑞 sayısı bir 𝑝 sayısı olacaktır. Bu 

durumda 𝑘 = 𝑗 olur. Ayrıca 𝑝1 < 𝑝2 < 𝑝3 < ⋯ < 𝑝𝑘 ve 𝑞1 < 𝑞2 < ⋯ <

𝑞𝑘  küme elemanları artan sırada oluşturulduğunda her 𝑖 değeri için 

𝑝𝑖 = 𝑞𝑖  olacaktır. Eşitliğimizin her iki tarafını 𝑝𝑖
𝑏𝑖 sayısıyla bölelim. 

𝑎𝑖 > 𝑏𝑖  olması durumunda, 

𝑝1
𝑎1𝑝2

𝑎2𝑝3
𝑎3 … 𝑝𝑖

𝑎𝑖−𝑏𝑖 … 𝑝𝑘
𝑎𝑘 = 𝑝1

𝑏1𝑝2
𝑏2𝑝3

𝑏3 … 𝑝𝑖−1
𝑏𝑖−1𝑝𝑖+1

𝑏𝑖+1 … 𝑝𝑘
𝑏𝑘  elde edilir. 

Eşitliğin sol tarafı  𝑝𝑖  sayısıyla bölünmesine rağmen sağ tarafı 

bölünmemiştir. Benzer şekilde 𝑎𝑖 < 𝑏𝑖  olması durumunda da bu tür 

bir çelişkiye varılacaktır. Bu durumda 𝑎𝑖 = 𝑏𝑖  elde edilir ki bu da ispat 

için istenendir. 

 Örnek: 𝑝 ≠ 5 tek asal sayı olmak üzere 𝑝2 − 1 veya 𝑝2 + 1 

sayılarının 10 sayısıyla tam bölünebildiğini bulalım. 
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Çözüm: 5 asal sayısının dışındaki tek asal sayıları 10𝑞 + 1, 10𝑞 + 3, 

10𝑞 + 7 ve 10𝑞 + 9 formları şeklinde yazmak mümkündür. 

Formlardan, 

𝑝2 = (10𝑞 + 1)2 = 100𝑞2 + 20𝑞 + 1 ise (𝑝2 − 1) = 10(10𝑞2 + 2𝑞) ve 

10|(𝑝2 − 1)  

𝑝2 = (10𝑞 + 3)2 = 100𝑞2 + 60𝑞 + 9 ise (𝑝2 + 1) = 10(10𝑞2 + 6𝑞 + 1) 

ve 10|(𝑝2 + 1)  

𝑝2 = (10𝑞 + 7)2 = 100𝑞2 + 140𝑞 + 49 ise (𝑝2 + 1) = 10(10𝑞2 + 14𝑞 +

5) ve 10|(𝑝2 + 1)  

𝑝2 = (10𝑞 + 9)2 = 100𝑞2 + 180𝑞 + 81ise (𝑝2 − 1) = 10(10𝑞2 + 18𝑞 +

8) ve 10|(𝑝2 − 1, eşitlikleri elde edilir. 

 Örnek: 𝑚 > 1 tam sayısının kare sayısı olması için gerek ve 

yeter şartın 𝑚 tam sayısının asal çarpanlarında ki tüm asal sayılarının 

üslerinin çift tam sayı olması gerektiğini gösterelim. 

Çözüm: 𝑚 tam sayısının tam kare sayı olduğunu kabul edelim. Bazı 𝑛 

gibi tam sayılar için 𝑚 = 𝑛2 yazılabilir. 𝑛 = 𝑝1
𝑎1𝑝2

𝑎2𝑝3
𝑎3 … 𝑝𝑖

𝑎𝑖  

olduğunda 𝑛2 = 𝑝1
2𝑎1𝑝2

2𝑎2𝑝3
𝑎3 … 𝑝𝑖

2𝑎𝑖   olacaktır ki 𝑚 tam sayısının 

bütün asal çarpanları kuvvetinin iki olduğu görülür. 𝑚 tam sayısının 

asal çarpanları kuvvetlerinin çift sayı olduğunu kabul edelim. 𝑚 =

𝑝1
𝑎1𝑝2

𝑎2𝑝3
𝑎3 … 𝑝𝑖

𝑎𝑖  tam kare bir sayı olduğundan 𝑎𝑖 = 2𝑏𝑖  olmak üzere 

𝑚 = 𝑝1
2𝑏1𝑝2

2𝑏2𝑝3
2𝑏3 … 𝑝𝑖

2𝑏𝑖 şeklinde yazılabilir. Bu durumda 𝑚 =

(𝑝1
𝑏1𝑝2

𝑏2𝑝3
𝑏3 … 𝑝𝑖

𝑏𝑖)
2

 olacaktır. 

 Örnek: 𝑛 > 2 olmak üzere 𝑛 < 𝑝 < 𝑛! eşitsizliğini sağlayan bir 

𝑝 asal sayısının varlığını gösterelim. 

Çözüm: 𝑛 > 2 olmak üzere 𝑛 < 𝑛! − 1 < 𝑛! eşitsizliğini yazabiliriz. 

Eğer (𝑛! − 1) asal sayıysa istenilendir. Eğer (𝑛! − 1) asal sayı değilse 

𝑝 < (𝑛! − 1) olacaktır. 𝑝 ≤ 𝑛 olduğunu farz edelim. Bu durumda 𝑝 

sayısı 1, 2, 3, … , 𝑛 sayılarından biri olacaktır. Dolayısıyla 𝑝|𝑛! ve 
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𝑝|(𝑛! − 1) olacaktır. (𝑛!, 𝑛! − 1) = 1 olduğu da göz önüne alınırsa 𝑝 >

𝑛 sonucuna ulaşılacaktır.  

Soru: 𝑝 = 3𝑛 + 1 şeklinde olan asal sayıların 6𝑚 + 1 formatında da 

olacağını gösteriniz. 

 Örnek: Herhangi tek asal sayının 4𝑘 + 1 veya 4𝑘 + 3 

formatında olacağını gösterelim. 

Çözüm: Herhangi bir pozitif tam sayı, bölme algoritmasına göre, 𝑟 =

0, 1, 2, 3 olmak üzere 𝑝 = 4𝑞 + 𝑟 şeklinde yazılabilir. 

𝑟 = 0 için 𝑝 = 4𝑞 = 2(2𝑞) bir çift tam sayı belirtir, 

𝑟 = 1 için 𝑝 = 4𝑞 + 1 = 2(2𝑞) + 1 bir tek tam sayı belirtir, 

𝑟 = 2 için 𝑝 = 4𝑞 + 2 = 2(2𝑞 + 1) bir çift tam sayı belirtir, 

𝑟 = 3 için 𝑝 = 4𝑞 + 3 = 2(2𝑞) + 3 bir tek tam sayı belirtir. Bu 

durumda herhangi bir tek asal sayının 4𝑘 + 1 veya 4𝑘 + 3 formatında 

olacağı görülür. 

Eratosthenes Kalburu 

Bir tam sayının asal/bileşik sayı olup olmadığının 

belirlenmesi, genel bir çözümünün bulunup bulunmadığını kolaylıkla 

söylemek mümkün görünmemektedir. Bir sayının asal sayılığı, 

Aritmetiğin Temel Teoremi yardımıyla bu sayının, en küçük asal 

sayıdan başlayarak bilinen asal sayılara art arda bölünmesiyle 

anlaşılabilmektedir. Ancak bu metot daha büyük asal sayıların varlığı 

nedeniyle çok büyük sayılar için uygulanması imkânsız hale gelmiştir. 

Teorem: 𝑛 > 1 bileşik tam sayısının √𝑛 sayısından büyük 

olmayan bir asal çarpanı vardır. 

İspat: 𝑛 bileşik sayısını 1 < 𝑎 ≤ 𝑏 < 𝑛 olmak üzere 𝑛 = 𝑎 ∙ 𝑏 şeklinde 

yazalım. 𝑎 ≤ √𝑛 olmalıdır. Bu durum söz konusu değilse 𝑏 ≥ 𝑎 > √𝑛 

olmasını gerektirir ki bu sefer de 𝑎 ∙ 𝑏 > 𝑛 olması imkânsızdır. 𝑎 tam 
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sayısını bölen, 𝑝 ≤ 𝑎 ≤ √𝑛 olacak şekilde bir 𝑝 asal sayısı olmalıdır. 

Ayrıca 𝑝|𝑎 ve 𝑎|𝑛 ise 𝑝|𝑛 olur. Sonuç olarak 𝑝 asal sayısı, √𝑛 sayısından 

büyük olmayan, 𝑛 bileşik sayısının bir çarpanı olacaktır. 

 Örnek: 509 sayısının asal olup olmadığını bulalım. 

Çözüm: 509 sayısının karekök değerinin 22 < √509 < 23 aralığında 

bir değere karşılık geleceği görülebilir. 509 sayısının, 22 sayısından 

büyük olmayan asal sayılara bölünüp bölünmediğini kontrol 

etmeliyiz. Bahsi geçen asal sayılar: 2, 3, 5, 7, 11, 13, 17 ve 19 asal 

sayıları olacaktır. 509 sayısının bu asal sayılara bölünüp 

bölünmediğini kontrol ettiğimizde, bu asal sayılardan hiçbirine 

bölünmediği görülecektir. Sonuç olarak 509 sayısı asal sayı olacaktır. 

 𝑎 > 1 tam sayısından büyük herhangi bir tamsayının, 

kendisinden küçük herhangi bir asal sayıya bölünememesi 

durumunda 𝑎 tam sayının asal sayı olduğu bilgisini önceki 

çalışmalarımızdan biliyoruz. Çalışmaları, Sayı Teorisinde önemli 

olmaya devam eden bir başka Yunan matematikçi Eratosthenestir. 

Eratosthenes, belirli bir 𝑛 tam sayısının altındaki tüm asal sayıları 

bulmak için “Eratosthenes Kalburu” adı verilen bir teknik 

kullanmıştır. Bu metot, 2 tam sayısından itibaren verilen 𝑛 tam 

sayısına kadar bütün tam sayıların bir liste şeklinde yazılmasına ve 

sonra bu listeden bileşik sayıların atılmasına dayanmaktadır. İlk 

olarak en küçük asal sayı olan 2 sayısından başlanır ve 2 sayısının, 𝑛 

tam sayısını geçmeyen bütün katları: 4, 6, 8, 10, … bu listeden çıkarılır. 

Sonra 3, daha sonra 5 ve diğer bütün asal sayılar için bu teknik 

sürdürülür. Her bileşik sayının kendisinin karekökünü geçmeyen bir 

asal sayı böleni olduğundan, listedeki her bileşik sayının √𝑛 sayısını 

geçmeyen bir asal sayı böleni bulunacaktır. Böylece √𝑛 sayısını 

geçmeyen her asalın bütün katları çıkarılarak, tüm bileşik sayılar 
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listeden çıkarılmış olacak ve geriye yalnızca 𝑛 tam sayısını geçmeyen 

asal sayılar kalmış olacaktır. 

 Aşağıdaki tablo 𝑛 = 200 sayısı için Eratosthenes Kalburunun 

nasıl uygulandığını göstermektedir. 

 4 6 8 9 10 

12 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

51 52 53 54 55 56 57 58 59 60 

61 62 63 64 65 66 67 68 69 70 

71 72 73 74 75 76 77 78 79 80 

81 82 83 84 85 86 87 88 89 90 

91 92 93 94 95 96 97 98 99 100 

101 102 103 104 105 106 107 108 109 110 

111 112 113 114 115 116 117 118 119 120 

121 122 123 124 125 126 127 128 129 130 

131 132 133 134 135 136 137 138 139 140 

141 142 143 144 145 146 147 148 149 150 
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151 152 153 154 155 156 157 158 159 160 

161 162 163 164 165 166 167 168 169 170 

171 172 173 174 175 176 177 178 179 180 

181 182 183 184 185 186 187 188 189 190 

191 192 193 194 195 196 197 198 199 200 

  

Bu tablo incelendiğinde, 

i. 14 < √200 < 15 olduğundan, listeden en son 13 asal sayının katları 

çıkarılarak 200 sayısına kadar asal sayıların elde edildiği görülecektir.  

ii. 2 ve 5 sayılarının dışındaki bütün asal sayıların tablonun 1., 3. 7. ve 9. 

sütunlarında bulunduğu ve bu sütunlardaki asal sayıların değerinin 

birbirlerine yakın oldukları görülecektir. 

iii. 10𝑘 + 1, 10𝑘 + 3, 10𝑘 + 7 ve 10𝑘 + 9 biçiminde sonsuz çoklukta asal 

sayının varlığından bahsedilebilecektir. 

iv. Benzer şekilde 4𝑘 + 1 ve 4𝑘 + 3 şeklinde sonsuz çoklukta asal sayının 

olacağı görülecektir. 

 Teorem: (Euclid Teoremi) Sonsuz çoklukta asal sayı vardır. 

İspat: 𝑃 = {2, 3, 5, 7, … , 𝑝} asal sayılar kümesi ve 𝑝 sayısı da en büyük 

asal sayı olsun.  Bu kümenin elemanları kullanılarak oluşturulan 𝑞 =

2 ∙ 3 ∙ 5 ∙ 7 ∙ … ∙ 𝑝 + 1 sayısını ele alalım. 𝑞 sayısı 2, 3, 5, 7, … , 𝑝 

sayılarından biriyle bölünemez. Böylece 𝑞 ya asal sayıdır ya da 𝑝 ve 𝑞 

sayıları arasındaki bir asal sayıyla bölünür. Her iki durumda da 𝑝 asal 

sayısından büyük bir asal sayı bulunabilecektir. Sonuç olarak asal 

sayılar sonsuz çoklukta olacaktır. 
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 Teorem: (Dirichlet Teoremi) 𝑎 ve 𝑏 iki pozitif tam sayı ve 

(𝑎, 𝑏) = 1 olmak üzere 𝑎𝑛 + 𝑏 şeklinde sonsuz çoklukta asal sayı 

vardır. 

İspat: (𝑎, 𝑏) = 𝑑 > 1 olduğunda her 𝑛 ≥ 1 sayısı için 𝑑|𝑎𝑛 + 𝑏 

olacağından, 𝑎𝑛 + 𝑏 sayısı hiçbir zaman asal olamayacaktır. 

 Teorem: 𝑎 ve 𝑏 iki pozitif tam sayı ve (𝑎, 𝑏) = 1 olmak üzere 

𝑎𝑛 + 𝑏 şeklinde sonsuz çokluktaki sayılar sadece asal sayılardan 

oluşmazlar. 

İspat: 𝑎𝑛 + 𝑏 = 𝑝, şeklinde asal sayılardan oluştuğunu varsayalım. 

𝑛𝑘 = 𝑛 + 𝑘𝑝, 𝑘 ∈ ℕ+ olmak üzere, 

𝑎 + 𝑛𝑘𝑏 = 𝑎 + (𝑛 + 𝑘𝑝)𝑏 = (𝑎 + 𝑛𝑏) + 𝑘𝑝𝑏 = 𝑝 + 𝑘𝑏𝑝 = 𝑝(1 + 𝑘𝑝) 

şeklinde yazılabilir. 𝑝|𝑝(1 + 𝑘𝑝) olacağından 𝑝|𝑎 + 𝑛𝑘𝑏 olacaktır. Bu 

durum varsayımımızla çelişmektedir. Sonuçta 𝑎𝑛 + 𝑏 şeklinde sonsuz 

çokluktaki sayılar sadece asal sayılardan oluşmayacaklardır. 

 Teorem: 𝑝, bütün asal sayılar üzerinde değerler alabilen bir 

sayı olmak üzere ∑
1

𝑝

∞
𝑖=1  serisi ıraksaktır. 

İspat: 2, 3, 5, 7, … , 𝑝𝑗 kümesini asalların ilk 𝑗 tanesi olduklarını 

varsayalım. 𝑥 sayısını geçmeyen ve 𝑝𝑗 sayısından büyük olan herhangi 

bir 𝑝 asalıyla bölünemeyen 𝑛 doğal sayılarının kümesi de 𝑁(𝑥, 𝑗) 

olsun. Eğer böyle bir 𝑛 sayısını, herhangi bir 𝑚 asal sayısının karesiyle 

bölünemeyen bir sayı olmak üzere 𝑛 = 𝑛1
2𝑚 biçiminde ifade ederek 𝑚 

sayısını 𝑚 = 2𝛼13𝛼25𝛼3 … 𝑝
𝑗

𝛼𝑗 şeklinde yazabiliriz. 𝛼 değerleri 0 veya 

1 olmak zorundadır. 𝛼 üsleri için tam olarak 2𝑗 seçim söz konusu olup, 

𝑚 için 2𝑗 değerinden fazla farklı değer bulunamaz. Ayrıca 𝑛1 ≤ √𝑛 ≤

√𝑥 olduğundan 𝑛1 değerinin birbirinden farklı √𝑥 değerinden fazla 

değeri bulunamaz. O halde istenilen biçimde 𝑛 sayılarını en fazla 2𝑗√𝑥 

sayıda oluşturabiliriz. 𝑁(𝑥, 𝑗) ≤ 2𝑗√𝑥 olacaktır. 
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 ∑
1

𝑝

∞
𝑖=1  serisinin yakınsak olduğunu varsayalım. ∑

1

𝑝

∞
𝑖=1 <

1

2
 

olacak biçimde, 𝑗. terimden sonraki kalan 
1

2
 sayısından küçük olacak 

şekilde bir 𝑗 indisi olacaktır. 𝑗 bu özel değeri için 𝑖 > 𝑗 olan bir takım 

𝑝𝑖  asallarıyla bölünebilen ve böylece 𝑁(𝑥, 𝑗) de sayılamayan 𝑛 ≤ 𝑥 

olan tam sayılarının sayısını göz önüne alarak 𝑁(𝑥, 𝑗) değerini 

yeniden belirleyelim. Böyle bir 𝑖 için 𝑘, 𝑘𝑝𝑖 ≤ 𝑥 olacak şekilde en 

büyük tam sayı olmak üzere 𝑝𝑖 , 2𝑝𝑖 , … , 𝑘𝑝𝑖 tam sayıları 𝑛 ≤ 𝑥 olan 𝑛 

sayısının değerleridir. Bu halde, her 𝑖 > 𝑗 için, 𝑛 sayısının böyle en 

fazla 
𝑥

𝑝𝑖
 değeri vardır. Buradan 𝑁(𝑥, 𝑗) değerinde sayılamayan 𝑛 ≤ 𝑥 

eşitsizliğini gerçekleyen 𝑛 sayısının değerlerinin sayısının en fazla 

∑
𝑥

𝑝𝑖

∞
𝑖=𝑗+1  olduğu sonucuna varılacaktır. O halde 𝑥 − 𝑁(𝑥, 𝑗); 

𝑝𝑗+1, 𝑝𝑗+2, … değerlerinden biri veya daha fazlasıyla bölünebilen ve 

𝑛 ≤ 𝑥 olan 𝑛 değerlerinin sayısıdır. ∑
1

𝑝

∞
𝑖=1 <

1

2
 ifadesinden 𝑥 −

𝑁(𝑥, 𝑗) ≤ ∑
𝑥

𝑝𝑖

∞
𝑖=𝑗+1 <

𝑥

2
 veya 

𝑥

2
< 𝑁(𝑥, 𝑗) bulunur. 𝑁(𝑥, 𝑗) ≤ 2𝑗√𝑥 

ifadesi yardımıyla her pozitif 𝑥 tam sayısı için 
𝑥

2
< 2𝑗√𝑥 veya 𝑥 <

22𝑗+2 elde edilir. Fakat pozitif tam sayılar kümesi sınırsız olduğundan 

bu sonuç açık olarak yanlış olacaktır. Bu durumda ∑
1

𝑝

∞
𝑖=1  serisi 

yakınsak olamayacaktır.  

 Teorem: 𝑛 > 2 ve 𝑝 asal sayı olmak üzere, 

𝑝, 𝑝 + 𝑑, 𝑝 + 2𝑑, 𝑝 + 3𝑑, … , 𝑝 + (𝑛 − 1)𝑑 

sayılarının hepsi asal sayıysa 𝑛 doğal sayısından küçük her asal sayı 𝑑 

sayısını bölebilir. 

İspat: 𝑛 doğal sayısından küçük 𝑞 asal sayısının 𝑑 sayısını bölmediğini 

kabul edelim. 𝑝, 𝑝 + 𝑑, 𝑝 + 2𝑑, 𝑝 + 3𝑑, … , 𝑝 + (𝑞 − 1)𝑑 sayılarının 𝑞 

sayısıyla bölündüğünde farklı kalanları verdiğini varsayalım. 𝑗 ve 𝑘 

tam sayıları 0 ≤ 𝑗 < 𝑘 ≤ 𝑞 − 1 olmak üzere 𝑝 + 𝑗𝑑 ve 𝑝 + 𝑘𝑑 sayıları 

𝑞 sayısıyla bölümünden aynı kalanı verecektir. Bu durumda 𝑞|(𝑘 −
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𝑗)𝑑 olacaktır. (𝑞, 𝑑) = 1 eşitliği, 𝑞|𝑘 − 𝑗 olmasını gerektirecektir ki bu 

durum 𝑘 − 𝑗 ≤ 𝑞 − 1 eşitsizliği için saçma olacaktır. Sonuçta bu 

kalanlardan biri sıfır olmalıdır. Bu da 0 ≤ 𝑡 ≤ 𝑞 − 1 olacak şekilde 

bazı 𝑡 değerleri için 𝑞|𝑝 + 𝑡𝑑 olması anlamına gelecektir. 𝑝 + 𝑡𝑑 

sayısının bileşik sayı olduğu görülecektir. 𝑝 < 𝑛 olsaydı dizinin 

terimlerinden biri 𝑝 + 𝑝𝑑 = 𝑝(1 + 𝑑) olurdu. Elde edilen çelişkiyle 

𝑞|𝑝 olduğu ispatlanmış olur. 

Teorem: 4𝑘 + 3 biçiminde sonsuz çoklukta asal sayı vardır. 

İspat: Bu biçimde 𝑝1, 𝑝2, … , 𝑝𝑟 gibi 𝑟 tane sonlu sayıda asal sayı 

bulunduğunu varsayalım.  

𝑚 = 4 ∙ 𝑝1 ∙  𝑝2 ∙  … ∙ 𝑝𝑟 − 1 = 4(𝑝1 ∙  𝑝2 ∙  … ∙ 𝑝𝑟 − 1) + 3 

sayısını göz önüne alalım. 𝑚 sayısı 4𝑘 + 3 biçiminde ve her 𝑖 değeri 

için 𝑚 > 𝑝𝑖olduğundan 𝑚 sayısının bileşik sayı olacağı açıktır. 4𝑘 + 1 

veya 4𝑘 + 3 biçiminde asal çarpanlarının bulunması gerektiği 

sonucuna varılır. 4𝑘 + 1 biçimindeki sayıların çarpımı yine bu 

biçimde olacağından 𝑚 sayısının en az bir tane 4𝑘 + 3 biçiminde asal 

böleninin olacağı söylenebilir. Bu durumda bazı 𝑖 değerleri için 𝑝𝑖|𝑚 

olacaktır. Fakat bu durumda da 𝑝𝑖|1 elde edilir ki bu durum 

varsayımımızla çelişir. Son durumda bu çelişki bizi 4𝑘 + 3 biçiminde 

sonsuz çoklukta asal sayı olduğunu gösterir.  

Örnek: 𝑝, 𝑞, 5 doğal sayısından büyük veya eşit asal sayılar 

olmak üzere, 24|𝑝2 − 𝑞2 olacağını gösterelim. 

Çözüm: 5 doğal sayısından büyük veya eşit olan asal sayılar tek sayı 

olmalıdır. Bu tür tek sayılar 4𝑘 ∓ 1 şeklinde düşünülebilir. 

1.adım: Eğer iki asal sayı aynı kalanlıysa, 

(𝑝 − 𝑞)(𝑝 + 𝑞) = 4𝑚(4𝑛 + 2) = 8𝑡 

2.adım: Eğer iki asal sayı farklı kalanlıysa, 

(𝑝 − 𝑞)(𝑝 + 𝑞) = (4𝑚 + 2)4𝑛 = 8𝑡 
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Bu tür tek sayılar 3𝑘 ∓ 1 şeklinde düşünülebilir  

3.adım: Eğer iki asal sayı aynı kalanlıysa, 

(𝑝 − 𝑞)(𝑝 + 𝑞) = 3𝑚(3𝑛 ± 1) = 3𝑠 

Eğer iki asal sayı farklı kalanlıysa, 

(𝑝 − 𝑞)(𝑝 + 𝑞) = (3𝑚 ± 1)3𝑛 = 3𝑠 

1. ve 2. adımda 8|(𝑝 − 𝑞)(𝑝 + 𝑞), 3. ve 4. adımda 3|(𝑝 − 𝑞)(𝑝 + 𝑞) 

olmaktadır. 3 ve 8 sayıları aralarında asal olduklarından dolayı, 

24|(𝑝 − 𝑞)(𝑝 + 𝑞) olacaktır. 

Euclid Sayıları 

Bir asal sayıdan küçük veya eşit bütün asal sayıların 

çarpımıyla elde edilen sayılar, asal sayıların sonsuz çoklukta 

olduğunu göstermede kullanılmıştır. Bu çarpım 𝑝# şeklide 

gösterilmek üzere; 𝑝# + 1 sayıları, Öklid Sayıları olarak isimlendirilir. 

2# + 1 = 2 + 1 = 3  

3# + 1 = 2 ∙ 3 + 1 = 7   

5# + 1 = 2 ∙ 3 ∙ 5 + 1 = 31  

7# + 1 = 2 ∙ 3 ∙ 5 ∙ 7 + 1 = 211  

11# + 1 = 2 ∙ 3 ∙ 5 ∙ 7 ∙ 11 + 1 = 2311  

sayılarının hepsi asal sayıdır. Ancak,  

13# + 1 = 59 ∙ 509  

17# + 1 = 19 ∙ 97 ∙ 277  

19# + 1 = 347 ∙ 27953  

sayıları asal sayı değildir. Öklid sayılarından hareketle aşağıdaki gibi 

sonsuz çoklukta elemanı olan sayı dizisini oluşturalım. 

𝑛1 = 2 
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𝑛2 = 𝑛1 + 1 

𝑛3 = 𝑛2 ∙ 𝑛1 + 1 

𝑛4 = 𝑛3 ∙ 𝑛2 ∙ 𝑛1 + 1 

⋮ 

𝑛𝑘 = 𝑛𝑘−1 ∙ … ∙ 𝑛3 ∙ 𝑛2 ∙ 𝑛1 + 1 

⋮ 

Bu sayı dizisinin her elemanı bir asal sayı tarafından 

bölünecektir. Ama bu sayılardan aynı asala bölünen iki sayı 

olmayacaktır. 𝑖 < 𝑘 olmak üzere, (𝑛𝑖 , 𝑛𝑘) = 1 olacaktır. Bu durumda, 

𝑝𝑛 asal sayıların doğal sıralanışını göstermek üzere, 𝑝𝑛 ∙ … ∙ 𝑝3 ∙ 𝑝2 ∙

𝑝1 + 1 sayısı en az bir asal sayıya bölünebilecektir. 𝑝𝑛+1 asal sayısı, 

𝑝𝑛 ∙ … ∙ 𝑝3 ∙ 𝑝2 ∙ 𝑝1 + 1 sayısından büyük olamayacaktır. Sonuç olarak, 

𝑝𝑛 ≤ 𝑝𝑛−1 ∙ … ∙ 𝑝3 ∙ 𝑝2 ∙ 𝑝1 + 1, 𝑛 ≥ 2 

elde edilebilir. Bu eşitsizliğin oldukça büyük bir değer aralığında 

olduğu görülebilir. Çalışmanın devamında Bonse,  

𝑝𝑛
2 ≤ 𝑝𝑛−1 ∙ … ∙ 𝑝3 ∙ 𝑝2 ∙ 𝑝1, 𝑛 ≥ 5 

eşitsizliğini vermiştir. 𝑛 = 5 için 𝑝5
2 < 210 veya 𝑝5 ≤ 14 olduğu 

görülür. Daha iyi bir değer aralığıyla, 

𝑝2𝑛 ≤ 𝑝𝑛 ∙ … ∙ 𝑝3 ∙ 𝑝2 − 2, 𝑛 ≥ 3 

eşitsizliği elde edilebilir. Bu eşitsizliklerden sonra aşağıdaki teorem 

verilebilir. 

Teorem: 𝑝𝑛, 𝑛. asal sayı olmak üzere, 𝑝𝑛 ≤ 22𝑛−1
 eşitsizliği 

geçerlidir. 

İspat: İndüksiyon metoduyla ispatımızı yapalım. 𝑛 = 1 için 

2 ≤ 2 doğru olduğu görülür. 𝑛 > 1 değeri için eşitsizliğimizin geçerli 

olduğunu göstermeliyiz. 
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Bu biçimde 𝑝1, 𝑝2, … , 𝑝𝑟 gibi 𝑟 tane sonlu sayıda asal sayı 

bulunduğunu varsayalım.  

𝑝𝑛+1 ≤ 𝑝𝑛 ∙ … ∙ 𝑝3 ∙ 𝑝2 ∙ 𝑝1 + 1 

𝑝𝑛+1 ≤ 21 ∙ 22 ∙ … ∙ 22𝑛−1
+ 1 = 21+2+22+⋯+2𝑛−1

 

1 + 2 + 22 + ⋯ + 2𝑛−1 = 2𝑛 − 1 eşitliğinden faydalanılarak, 

𝑝𝑛+1 ≤ 22𝑛−1 + 1 

elde edilir. Ayrıca, 1 ≤ 22𝑛−1 olacağından, 

𝑝𝑛+1 ≤ 22𝑛−1 + 22𝑛−1 = 2 ∙ 22𝑛−1 = 22𝑛
 

sonucuna ulaşılır ki bu durum da istenilendir. 

Sonuç: 𝑛 ≥ 1 olması durumunda 22𝑛
 sayısından küçük, en az 

𝑛 + 1 tane asal sayı vardır. 

Mersenne ve Fermat Sayıları 

 Bazı özel biçimdeki sayıların asal olup-olmadığını belirlemek 

için farklı metotlar ortaya atılmıştır. Bunlardan en çok tanınanı 

Mersenne ve Fermat Sayıları olmuştur. 2 sayısının pozitif bütün 

kuvvetlerinin çift sayı olduğu, (2𝑛 − 1) biçimindeki bütün sayıların da 

tek sayı olacağı bilinmektedir. 2 sayısının dışındaki bütün asal 

sayıların tek sayı olduğu ancak her tek sayının asal sayı olamayacağı 

da bir gerçektir. Asal sayıların genel teriminin ortaya konması adına 

pek çok çalışmalarda bulunulmuştur. Mersenne (MS 1588-1648) 

bilinen asallardan hareketle, 𝑝 asal sayı olmak üzere, (2𝑝 − 1 ) 

biçimindeki sayıların da asal sayı olacağını ileri sürmüştür. Benzer 

şekilde, Fermat (MS 1607-1665) negatif olmayan her 𝑛 tam sayısı için 

(22𝑛
+ 1 ) biçimindeki sayıların da asal sayı olacağını ileri sürmüştür. 

Günümüz çalışmalarında her iki bilim insanının çalışmalarında 

hatalar olduğu ortaya konmuştur. 
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 Mersenne, 𝑝 asal sayı olmak üzere (2𝑝 − 1) sayısının bazı 

değerleri için asal sayılar bulmuştur. Bilinen en büyük Mersenne asalı 

(282589933 − 1) sayısıdır. Fermat, negatif olmayan her 𝑛 tam sayısı için 

(22𝑛
+ 1) biçimindeki sayıların asal olacağını ileri sürmüştür. Fermat 

sayısı 𝑝 gibi bir asal sayıya eşit olduğunda, 𝑝 kenarlı düzgün bir 

çokgenin pergelle ve cetvelle çizilebileceğinin Gauss tarafından ispat 

edilmesiyle Fermat sayılarının düzlem geometrisinde ki önemi de 

artmıştır. Bugün için 𝐹0 = 3, 𝐹1 = 5, 𝐹2 = 17, 𝐹3 = 257 ve 𝐹4 = 65.537 

olmak üzere beş tane Fermat asalı bilinmektedir. 

 Matematik meraklısı her insanın, bitmek bilmeyen 

heyecanıyla, asal sayılarla ilgili çalışmalar hız kesmeden yoluna 

devam edecektir. 

 Teorem: Herhangi iki Fermat sayısı aralarında asaldır. 

 İspat: 𝑘 > 0 olmak üzere herhangi iki 𝐹𝑛 ve 𝐹𝑛+𝑘 Fermat 

sayılarını göz önüne alalım ve 𝑚|𝐹𝑛, 𝑚|𝐹𝑛+𝑘 olduğunu kabul edelim. 

𝐹𝑛+𝑘 = 22𝑛+𝑘
+ 1 ise 𝐹𝑛+𝑘 − 2 = 22𝑛+𝑘

− 1 = (22𝑛
)

2𝑘

− 1 sayısında 

𝑥 = 22𝑛
 yazılacak olursa 𝑓(𝑥) = 𝑥2𝑘

− 1 şeklinde bir fonksiyon elde 

edilir. 𝑓(−1) = 0 olduğundan 𝑓(𝑥) fonksiyonunun (𝑥 + 1) gibi bir 

çarpanının olduğu söylenebilecektir. 𝑥 + 1 = 22𝑛
+ 1 = 𝐹𝑛 sayısı 𝑓(𝑥) 

fonksiyonunun bir çarpanı olacaktır. Bu durumda 𝐹𝑛|𝐹𝑛+𝑘 olup 𝑚|𝐹𝑛, 

𝑚|(𝐹𝑛+𝑘 − 2) ve 𝑚|2 elde edilir. 𝐹𝑛 tek sayı olduğundan 𝑚 = 2 

olamayacaktır. Sonuçta 𝑚 = 1 olur ve (𝐹𝑛, 𝐹𝑛+𝑘) = 1 elde edilir. 

 Örnek: 𝑝4 = 7 olmak üzere 𝑀𝑝 = (2𝑝 − 1) Mersenne sayısının 

asal sayı olup-olmadığını Lucas-Lehmer testini uygulayarak bulalım. 

Çözüm: 𝑝 = 7 iken 𝑀7 = (27 − 1) = 127 sayısının asallık durumu için 

aşağıdaki algoritmayı oluşturalım. 

𝑠0 = 4 olmak üzere, 

𝑠1 = 𝑠0
2 − 2 = 42 − 2 = 14 ve 𝑠1 = 14 ≡ 14 (𝑀𝑜𝑑127), 
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𝑠2 = 𝑠1
2 − 2 = 142 − 2 = 194 ve 𝑠2 = 194 ≡ 67 (𝑀𝑜𝑑127), 

𝑠3 = 𝑠2
2 − 2 = 672 − 2 = 4487 ve 𝑠3 = 4487 ≡ 42 (𝑀𝑜𝑑127), 

𝑠4 = 𝑠3
2 − 2 = 422 − 2 = 1762 ve 𝑠4 = 1762 ≡ 111 (𝑀𝑜𝑑127), 

𝑠5 = 𝑠4
2 − 2 = 1112 − 2 = 12319 ve 𝑠5 = 12319 ≡ 0 (𝑀𝑜𝑑127), 

𝑝 − 2 = 7 − 2 = 5 ve 𝑠5 ≡ 0 (𝑀𝑜𝑑 2𝑝 − 1 = 127) olduğu için 127 

sayısı asal sayıdır. 

Not: 𝑝 > 2 asal sayı olmak üzere, 𝑀𝑝 = (2𝑝 − 1) Mersenne sayısının 

asallığı, 

1. 𝑠0 = 4, 

2. 𝑠(𝑘+1) = 𝑠𝑘
2 − 2 ≡ 𝑙 (𝑀𝑜𝑑 2𝑝 − 1), 

𝑠𝑝−2 ≡ 0 (𝑀𝑜𝑑 2𝑝 − 1) olduğunda 𝑀𝑝 sayısı asal sayıdır. 

Soru: 𝑝 = 11 olduğunda 𝑀11 = (211 − 1) = 2047 Mersenne sayısının 

asal sayı olup-olmadığını Lucas-Lehmer testi uygulayarak belirleyiniz. 

Goldbach Sanısı 

Bir dizinin genel teriminin verilmesi durumunda dizinin diğer 

terimlerinin bulunacağı ya da geometrik veya aritmetik bir dizinin 

elemanları arasındaki ilişkiyle ilgili bilgiler verildiğinde genel 

teriminin bulunacağı bilinmektedir. Asal sayılar dizisi için de böyle 

formüllerin var olup-olmadığı düşünülebilir. Asal sayıların 

dağılımında görülen büyük düzensizlik nedeniyle, 𝑛. asal sayıyı veren 

bir formül, bir asaldan sonra gelen bir diğer asalı veren bir rekürans 

denklem, verilen bir asaldan büyük bir asal sayıyı veren bir kural, 

herhangi bir tam sayıdan küçük olan asal sayıların sayısını veren bir 

bağıntı var mıdır? Soruları hep olumsuz kalmıştır, bugüne kadar. 
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11-13, 17-19 ve 100 000 000 061-100 000 000 063 gibi ikiz 

asal sayıları arasındaki farkın küçük olduğu gibi uzun aralıklar da 

olabilir. İkiz asal sayıların varlığıyla ilgili olarak birçok ölçüt olmasına 

rağmen, sayılarının sonlu veya sonsuz olduğuna dair bir kanıt 

sunulamamıştır. Bugüne kadar bilinen en büyük ikiz asallar 

2996863034895 ∙ 21290000  ± 1 sayılarıdır. Ardışık asal sayılar 

arasında etkili bir şekilde hesaplanan en büyük boşluk, asal sayıdan 

sonra 1676 rakamdan oluşan boşluğa denk gelmektedir. 

Çözülmemiş başka bir asal sayı problemini, Goldbach (MS 

1690-1764) Euler’e yazdığı bir mektupta ortaya atmıştır. Goldbach, 

iki sayısından büyük her çift doğal sayının iki tek asal sayının toplamı 

şeklinde yazılabileceğini ileri sürmüştür. Bu durumu ilk birkaç sayı 

için gerçekleştirmek kolaydır: 
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4 = 2 + 2  14 = 7 + 7 = 3 + 11  

6 = 3 + 3  16 = 3 + 13 = 5 + 11  

8 = 3 + 5  18 = 5 + 13 = 7 + 11  

10 = 5 + 5  20 = 3 + 17 = 7 + 13  

12 = 5 + 7  22 = 3 + 19 = 5 + 17 = 11 + 11  

 Goldbach hipotezinin, bilgisayarlar yardımıyla çok büyük 

sayılara kadar doğrulandığı gösterilmiş olsa da, henüz genel kabul 

görmüş bir ispatı yoktur. Çözülememiş en eski matematik problemleri 

arasındaki yerini korumaya devam etmektedir. 

 Örnek: 𝑛3 + 1 formunda yazılabilecek tek asal sayının 2 

olduğunu gösterelim. 

Çözüm: 𝑛 tam sayısının negatif olması durumunda 𝑛3 + 1 sayısının 

pozitif ve asal sayı olamayacağı açıktır. 𝑛3 + 1 = (𝑛 + 1)(𝑛2 − 𝑛 + 1 ) 

şeklinde çarpanlarına ayrılabilir. 𝑛 doğal sayısının 1 sayısından büyük 

olması durumunda 𝑛3 + 1 sayısı iki sayının çarpımı şeklinde 

yazılabilir duruma geleceğinden dolayı 𝑛 ≥ 1 durumlarının hiç 

birinde 𝑛3 + 1 sayısı asal olamayacaktır. 𝑛3 + 1 = 𝑛 + 1 durumu 

kalıyor ki bu durumda 𝑛 = 1 olacaktır. 𝑛3 + 1 sayısı, 2 olacaktır. 

Soru: 𝑝 > 3 her ikiz asal sayının toplamının 12 sayısıyla tam 

bölünebildiğini gösteriniz. 
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UYGULAMALAR 

1) 𝑝 ve 𝑝2 + 8 asal sayıları için 𝑝3 + 4 sayısının asal sayı olduğunu gösteriniz.  

2) 𝑛 ≥ 2 olmak üzere √𝑛
𝑛

 sayısının irrasyonel sayı olduğunu gösteriniz. 

3) 𝑛 > 1 olmak üzere 𝑛! + 1 sayısını, 𝑛 doğal sayısından büyük ve tek olan her 𝑝 asal 

sayısının böldüğünü gösteriniz. 

4) 2 doğal sayısından büyük her doğal sayı için 𝑛 < 𝑝 < 𝑛! eşitsizliğini sağlayan bir asal 

sayının varlığını gösteriniz. 

5) 𝑛 > 3 olmak üzere 𝑛, 𝑛 + 2 ve 𝑛 + 4 sayılarının hepsinin birden asal olamayacağını 

gösteriniz. 

6) 𝑝 asal sayı olmak üzere 𝑝, 𝑝 + 2 ve 𝑝 + 6 sayılarının hepsinin birden asal sayı olması 

durumu üçlü-asallar olarak isimlendirilir. İlk üçlü-asal sayı grubunu bulunuz. 

7) 𝑝 asal sayı olmak üzere 𝑝 ∙ (𝑝 + 2) − 2 sonucunun da bir asal sayı olduğunu bulunuz. 

8) 𝑝𝑛, 𝑛𝑡ℎ asal sayı ve 𝑛 > 3 olmak üzere, 𝑝𝑛 < 𝑝1 + 𝑝2 + ⋯ + 𝑝𝑛−1 olduğunu gösteriniz. 

9) 𝑝 asal sayı ve 1 ≤ 𝑘 ≤ 𝑝 − 1 olmak üzere (
𝑝
𝑘

) sayısının 𝑝 sayısıyla bölünebileceğini 

gösteriniz. 

10) 𝑎 pozitif tam sayı ve 𝑝 asal sayı olmak üzere (𝑎, 𝑝2) = 𝑝 olduğunda (𝑎2, 𝑝2) = 𝑝2 

olacağını gösteriniz. 

11) 𝑛 pozitif tam sayı ve 𝑝 asal sayı olmak üzere 𝑝|(𝑛𝑝 − 𝑛) olacağını gösteriniz. 

12) 𝑝 ≠ 2 asal sayı olmak üzere 1 + 2 + 3 + ⋯ + 𝑝 değerinin 𝑝 asal sayısıyla 

bölünebilmesi için gerekli durumları belirleyiniz. 

13) 𝑝 ve 2𝑝 − 1 sayıları asal sayı olduğunda 2𝑝−1(2𝑝 − 1) sayısının mükemmel bir sayı 

olacağını gösteriniz. 

14) 𝑝 asal sayı ve 𝑝|𝑎𝑘 olmak üzere 𝑝|𝑎 olacağını gösteriniz. 

15) 𝑝 sayısı, 𝑛 bileşik sayısını bölen bir asal sayı olsun. 𝑝 > √𝑛 olması durumunda, 𝑛 

bileşik sayısını bölen 𝑞 < √𝑛 olacak şekilde bir 𝑞 asal sayısının olduğunu bulunuz. 

16) 𝑛 > 1 sayısından büyük ve 6𝑘 + 3 formunda olmayan bir tam sayıysa 𝑛2 + 2𝑛 

sayısının bileşik sayı olacağını gösteriniz.  

17) 𝑛 ≥ 2 doğal sayı olmak üzere, √𝑛
𝑛

 sayısının irrasyonel sayı olacağını gösteriniz. 

18)  𝑝𝑛, 𝑛. asal sayı olmak üzere, 𝑛 ≥ 3 doğal sayıları için                            𝑝𝑛+3
2 < 𝑝𝑛𝑝𝑛+1𝑝𝑛+2 

eşitsizliğinin gerçekleneceğini gösteriniz. 

19) 6𝑛 + 5 formunda sonsuz sayıda asal sayının olduğunu gösteriniz. 
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20) 𝑝 ve 𝑞 ikiz asal olmak üzere, 𝑝𝑞 − 2 değerinin asal sayı olduğunu gösteriniz. 

4. BÖLÜM 

KONGRÜANSLAR 

 Bazı olaylar veya durumlar belirli aralıklarla tekrar eder. Bu şekilde tekrar 

eden, devreden olaylara veya durumlara periyodik olaylar denmektedir. Hayatımızda 

bu şekilde gerçekleşen durumları bolca görmek mümkündür. Yılın aylarının 12 ayda, 

haftanın günlerinin 7 günde, günün saatlerinin 24 saatte bir tekrar etmesi 

karşılaştığımız rutinlerimizdendir. Saat 17.00 olduğuna göre 62 saat sonra saatin kaç 

olacağı, gün perşembeyse 97 gün sonrasının hangi gün olacağı, dört günde bir gün 

nöbet tutan doktorun bir yılda kaç nöbet tutacağı gibi durumlar bu tür olaylara örnek 

gösterilebilir. Kongrüans aritmetiği saat aritmetiği olarak da bilinmektedir. 

Kongrüans teorisinin, sayılar teorisinde yaygın kullanımı bulunmaktadır. 

Bölünebilme bu alanlardan sadece bir tanesidir. 

 “Tanım: Sabit ve sıfırdan farklı bir 𝑚 tam sayısı 𝑎 ve 𝑏 gibi herhangi iki tam 

sayının farkını bölüyorsa 𝑎 tam sayısı 𝑏 tam sayısına 𝑚 modülüne göre kongrüenttir 

denir, 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) biçiminde gösterilir. Eğer 𝑚 ∤ 𝑎 − 𝑏 olması durumunda 𝑎 tam 

sayısının 𝑏 tam sayısına kongrüent olmadığı söylenir, 𝑎 ≢ 𝑏 (𝑚𝑜𝑑 𝑚) biçiminde 

gösterilir. 

 6|18 ifadesi 6|(22 − 4) şeklinde yazılabilir. Bu ifadeyi 22 ≡ 4 (𝑚𝑜𝑑 6) 

yazımına dönüştürebiliriz. 18 = 13 − (−5) = 78 − 60 gibi eşitlikleri de olacağından 

13 ≡ (−5) (𝑚𝑜𝑑 6) veya 78 ≡ 60 (𝑚𝑜𝑑 6) denklikleri de yazılabilir. 

Not: 𝑎 ve 𝑏 tam sayılar olmak üzere, 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) olması için gerek ve yeter şart 𝑙 

tam sayısı için 𝑎 = 𝑏 + 𝑙 ∙ 𝑚 olmasıdır. 

 Teorem: 𝑎, 𝑏, 𝑐, 𝑑 ve 𝑚 > 0 tam sayılar olmak üzere 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) ve 𝑐 ≡

𝑑 (𝑚𝑜𝑑 𝑚) olduğunda aşağıdaki durumlar geçerlidir: 

i. 𝑎 ∓ 𝑐 ≡ 𝑏 ∓ 𝑑 (𝑚𝑜𝑑 𝑚), 

ii. 𝑎 ∙ 𝑐 ≡ 𝑏 ∙ 𝑑 (𝑚𝑜𝑑 𝑚), 

iii. 𝑎 ∓ 𝑐 ≡ 𝑏 ∓ 𝑐 (𝑚𝑜𝑑 𝑚), 

iv. 𝑎 ∙ 𝑐 ≡ 𝑏 ∙ 𝑐 (𝑚𝑜𝑑 𝑚). 

İspat:  
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i. 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) olması 𝑚|𝑎 − 𝑏 devamında 𝑎 − 𝑏 = 𝑚 ∙ 𝑙 olmasını 

gerektirir. Benzer şekilde 𝑐 − 𝑑 = 𝑚 ∙ 𝑘 olacaktır. Bu iki eşitlikten (𝑎 ∓ 𝑐) −

(𝑏 ∓ 𝑑) = 𝑚 ∙ (𝑘 + 𝑙) eşitliği elde edilir. 𝑚|(𝑎 + 𝑐) − (𝑏 + 𝑑) ve 𝑚|(𝑎 − 𝑐) −

(𝑏 − 𝑑) eşitliklerinden 𝑎 ∓ 𝑐 ≡ 𝑏 ∓ 𝑑 (𝑚𝑜𝑑 𝑚) elde edilir. 

ii. 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) ve 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑚) olduğundan 𝑚|𝑎 − 𝑏 ve 𝑚|𝑐 − 𝑑 elde 

edilecektir. (𝑎 − 𝑏) ∙ 𝑐 ve (𝑐 − 𝑑)𝑏  iki eşitlik de 𝑚 tam sayısı tarafından 

bölünür. (𝑎 − 𝑏)𝑐 + (𝑐 − 𝑑)𝑏 = 𝑎𝑐 − 𝑏𝑑 eşitliği de 𝑚 tam sayısı tarafından 

bölüneceğinden 𝑎 ∙ 𝑐 ≡ 𝑏 ∙ 𝑑 (𝑚𝑜𝑑 𝑚) elde edilir. 

iii. 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) denkliğinden 𝑚|𝑎 − 𝑏 elde edilir. (𝑎 ∓ 𝑐) − (𝑏 ∓ 𝑐) = 𝑎 − 𝑏 

ifadesi de 𝑚 tam sayısına bölünecektir. Bu eşitlikten 𝑎 ∓ 𝑐 ≡ 𝑏 ∓ 𝑐 (𝑚𝑜𝑑 𝑚) 

elde edilecektir. 

v.  𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) denkliğinden 𝑚|𝑎 − 𝑏 elde edilir. (𝑎 − 𝑏)𝑐 = 𝑎𝑐 − 𝑏𝑐 

ifadesi de 𝑚 tam sayısına bölünecektir. Bu eşitlikten 𝑎 ∙ 𝑐 ≡ 𝑏 ∙ 𝑐 (𝑚𝑜𝑑 𝑚) 

elde edilecektir. 

Gerçel sayılarda 𝑎 ≠ 0 olduğunda 𝑎 ∙ 𝑥 = 𝑎 ∙ 𝑦 ise 𝑥 = 𝑦 olacağını bilmekteyiz. 20 ≡

8 (𝑚𝑜𝑑 6) dekliğinde 5 ∙ 4 ≡ 2 ∙ 4 (𝑚𝑜𝑑 6) ise 5 ≢ 2 (𝑚𝑜𝑑 6) denksizliği elde 

edileceği için bu özellik kongrüanslarda genel olarak geçerli değildir. 

 Teorem: 𝑎, 𝑏, 𝑐, 𝑑 ve 𝑚 > 0 tam sayılar olmak üzere aşağıdaki durumlar 

geçerlidir: 

i. (𝑐, 𝑚) = 𝑑 olmak üzere 𝑎𝑐 ≡ 𝑏𝑐 (𝑚𝑜𝑑 𝑚) olması için gerek ve yeter şart 𝑎 ≡

𝑏 (𝑚𝑜𝑑 
𝑚

𝑑
) olmasıdır, 

ii. 𝑎𝑐 ≡ 𝑏𝑐 (𝑚𝑜𝑑 𝑚) ve (𝑐, 𝑚) = 1 olması durumunda 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) 

olacaktır. 

İspat:  

i. 𝑎𝑐 ≡ 𝑏𝑐 (𝑚𝑜𝑑 𝑚) olduğunda en az bir 𝑡 ∈ ℤ için 𝑐(𝑎 − 𝑏) = 𝑚𝑡 olacaktır. 

Eşitliğin her iki tarafı 𝑑 sayısına bölündüğünde 
𝑐

𝑑
(𝑎 − 𝑏) =

𝑚𝑡

𝑑
 eşitliği elde 

edilecektir. (
𝑐

𝑑
,

𝑚

𝑑
) = 1 olması 

𝑚

𝑑
|(𝑎 − 𝑏) olmasını gerektirecektir. Bu 

durumda 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 
𝑚

𝑑
) elde edilecektir. 
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ii. Yukarıdaki eşitlikte (𝑐, 𝑚) = 𝑑 = 1 olması durumunda ≡ 𝑏 (𝑚𝑜𝑑 
𝑚

𝑑
) 

ifadesinden 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) elde edilir. 

15 ≡ 5 (𝑚𝑜𝑑 10) olduğunda (5, 10) = 5 eşitliğinden 
15

5
≡

5

5
 (𝑚𝑜𝑑 

10

5
) veya 3 ≡

1 (𝑚𝑜𝑑 2) elde edilir. Benzer şekilde 42 ≡ 7 (𝑚𝑜𝑑 5), (7, 5) = 1 ve 
42

7
≡

7

7
 (𝑚𝑜𝑑 5) 

veya 6 ≡ 1 (𝑚𝑜𝑑 5) elde edilir. 

Sonuç: 𝑎, 𝑏, 𝑚 > 0 tam sayılar ve 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) olmak üzere herhangi 𝑛 > 0 tam 

sayısı için 𝑎𝑛 ≡ 𝑏𝑛 (𝑚𝑜𝑑 𝑚) eşitliği geçerlidir. 

Sonuç: 𝑎 herhangi bir tam sayı, 𝑛1ve 𝑛2 iki pozitif tam sayı olmak üzere 𝑛1|𝑎 ve 𝑛2|𝑎 

olması durumunda (𝑛1, 𝑛2)|𝑎 olacaktır. 

 Teorem: 𝑎, 𝑏 ve 𝑡1, 𝑡2, … , 𝑡𝑘 > 0 tam sayılar olmak üzere       𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑡1), 

𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑡2), 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑡3), … , 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑡𝑘) olursa 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 (𝑡1, 𝑡2, … , 𝑡𝑘)) 

olacaktır. 

İspat: 𝑡1|(𝑎 − 𝑏), 𝑡2|(𝑎 − 𝑏), … ,𝑡𝑘|(𝑎 − 𝑏) yazılabilir. Bu durum  (𝑡1, 𝑡2, … , 𝑡𝑘)|(𝑎 − 𝑏) 

olmasını gerektirecektir. Kongrüans tanımından 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 (𝑡1, 𝑡2, … , 𝑡𝑘)) elde 

edilecektir. 

 Teorem: 𝑚 ≠ 0 tam sayı olmak üzere tam sayılar kümesi üzerinde tanımlanan 

𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) kongrüans bağıntısı bir denklik bağıntısı oluşturur. 

İspat:  

Yansıma Özelliği: 𝑚|0 özelliği kullanılarak 𝑚|𝑎 − 𝑎 yazılabilir. Tanım gereği 𝑎 ≡

𝑎 (𝑚𝑜𝑑 𝑚) elde edilecektir. 

Simetri Özelliği: Eğer 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) ise tanım gereği 𝑚|𝑎 − 𝑏, 𝑎 − 𝑏 = 𝑚 ∙ 𝑡 

yazılabilir. Buradan 𝑏 − 𝑎 = 𝑚 ∙ (−𝑡) ve 𝑚|𝑏 − 𝑎 sonucuna ulaşılır. Tanım gereği 𝑏 ≡

𝑎 (𝑚𝑜𝑑 𝑚) elde edilecektir. 

Geçişme Özelliği: Eğer 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) ve 𝑏 ≡ 𝑐 (𝑚𝑜𝑑 𝑚) ise tanım gereği 𝑚|𝑎 − 𝑏, 𝑎 −

𝑏 = 𝑚 ∙ 𝑡 ve 𝑚|𝑏 − 𝑐, 𝑏 − 𝑐 = 𝑚 ∙ 𝑙 yazılabilir. 𝑎 − 𝑐 = (𝑎 − 𝑏) + (𝑏 − 𝑐) = 𝑚𝑡 + 𝑚𝑙 =

(𝑡 + 𝑙)𝑚 sonucuna ulaşılır. Tanım gereği 𝑎 ≡ 𝑐 (𝑚𝑜𝑑 𝑚) elde edilecektir. 

 Örnek: 𝑐𝑎 ≡ 𝑐𝑏 (𝑚𝑜𝑑 𝑛) ve (𝑐, 𝑛) = 𝑑 olması durumunda 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 
𝑛

𝑑
) 

olacağını gösterelim. 
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Çözüm: Kongürent hipotezimize göre, bazı 𝑘 gibi tam sayılar için 𝑐𝑎 − 𝑐𝑏 =

𝑐(𝑎 − 𝑏) = 𝑘𝑛 yazabiliriz. (𝑐, 𝑛) = 𝑑 olması durumunda 𝑟 ve 𝑠 gibi asal sayılar için 𝑐 =

𝑑𝑟 ve 𝑛 = 𝑑𝑠 olacaktır. Bu değerleri ilk eşitlikte yerine yazdığımızda 𝑟(𝑎 − 𝑏) = 𝑘𝑠 

eşitliğini elde ederiz. Bu durumda 𝑠|𝑟(𝑎 − 𝑏) ve (𝑟, 𝑠) = 1 olacaktır. Sonuç olarak 

𝑠|𝑎 − 𝑏 elde edilir. Kongürent hipotezinden 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑠) yazılır. 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 
𝑛

𝑑
) 

denkliği elde edilir. 

Sonuç:  𝑐𝑎 ≡ 𝑐𝑏 (𝑚𝑜𝑑 𝑝), 𝑝 asal sayı olmak üzere 𝑝 ∤ 𝑐 olması durumunda 𝑎 ≡

𝑏 (𝑚𝑜𝑑 𝑝) olacaktır. 

 Teorem: 𝑖 = 1, 2, 3, … , 𝑛 olmak üzere 𝑎𝑖 ≡ 𝑏𝑖  (𝑚𝑜𝑑 𝑚) olduğunda aşağıdaki 

durumlar geçerlidir: 

i. 𝑥𝑖 tam sayı olmak üzere ∑ 𝑎𝑖𝑥𝑖
𝑛
𝑖=1 ≡ ∑ 𝑏𝑖𝑥𝑖

𝑛
𝑖=1  (𝑚𝑜𝑑 𝑚), 

ii. ∏ 𝑎𝑖
𝑛
𝑖=1 ≡ ∏ 𝑏𝑖

𝑛
𝑖=1  (𝑚𝑜𝑑 𝑚). 

İspat:  

i. 𝑎𝑖 ≡ 𝑏𝑖  (𝑚𝑜𝑑 𝑚) olduğunda kongrüent hipotezinden en az bir 𝑞𝑖 ∈ ℤ için 

𝑎𝑖 − 𝑏𝑖 ≡ 𝑚𝑞𝑖  olacaktır. 𝑎𝑖𝑥𝑖 − 𝑏𝑖𝑥𝑖 ≡ 𝑚𝑞𝑖𝑥𝑖  eşitliğinden ∑ 𝑎𝑖𝑥𝑖
𝑛
𝑖=1 −

∑ 𝑏𝑖𝑥𝑖
𝑛
𝑖=1 ≡ 𝑚 ∑ 𝑞𝑖𝑥𝑖

𝑛
𝑖=1  elde edilir. Bu durumdan ∑ 𝑎𝑖𝑥𝑖

𝑛
𝑖=1 ≡

∑ 𝑏𝑖𝑥𝑖
𝑛
𝑖=1  (𝑚𝑜𝑑 𝑚) elde edilir.  

ii. İspatımız indüksiyon prensibiyle gerçekleştirelim. 𝑛 = 1 için iddianın aşikar 

olduğu görülür. 𝑛 = 𝑘 için doğru olduğunu kabul ederek ∏ 𝑎𝑖
𝑘
𝑖=1 ≡

∏ 𝑏𝑖
𝑘
𝑖=1  (𝑚𝑜𝑑 𝑚) olduğunu varsayalım. En az bir 𝑞𝑖 ∈ ℤ için ∏ 𝑎𝑖

𝑘
𝑖=1 −

∏ 𝑏𝑖
𝑘
𝑖=1 = 𝑚𝑞 olacaktır.  

∏ 𝑎𝑖
𝑘+1
𝑖=1 − ∏ 𝑏𝑖

𝑘+1
𝑖=1 = ∏ 𝑎𝑖

𝑘+1
𝑖=1 − 𝑏𝑘+1 ∏ 𝑎𝑖

𝑘
𝑖=1   

                                    +𝑏𝑘+1 ∏ 𝑎𝑖
𝑘
𝑖=1 − ∏ 𝑏𝑖

𝑘+1
𝑖=1    

                                          = (𝑎𝑘+1 − 𝑏𝑘+1) ∏ 𝑎𝑖
𝑘
𝑖=1  

                                           +𝑏𝑘+1(∏ 𝑎𝑖
𝑘
𝑖=1 − ∏ 𝑏𝑖

𝑘
𝑖=1 )  

                                          = 𝑚𝑞𝑘+1 ∏ 𝑎𝑖
𝑘
𝑖=1 + 𝑏𝑘+1𝑚𝑞  

                                          = 𝑚(𝑞𝑘+1 ∏ 𝑎𝑖
𝑘
𝑖=1 + 𝑏𝑘+1𝑞)  

elde edilir. Bu durumdan ∏ 𝑎𝑖
𝑘+1
𝑖=1 ≡ ∏ 𝑏𝑖

𝑘+1
𝑖=1  (𝑚𝑜𝑑 𝑚) elde edilir ki indüksiyon 

prensibi gereği ifadenin doğru olduğunu gösterir. 

 Örnek: 1! + 2! + 3! + ⋯ + 100! değerinin 18 ile bölümünden kalanını bulalım. 
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Çözüm: 1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 = 6! ≡ 0 (𝑚𝑜𝑑 18) olması durumunda,  

(6 + 𝑛)! ≡ 0 (𝑚𝑜𝑑 18) olacağı aşikardır.  

1! + 2! + 3! + 4! + 5! + ⋯ + 100! ≡ (1! + 2! + 3! + 4! + 5!)(𝑚𝑜𝑑 18)  

1! + 2! + 3! + 4! + 5! + ⋯ + 100! ≡ 153 (𝑚𝑜𝑑 18)  

1! + 2! + 3! + 4! + 5! + ⋯ + 100! ≡ 9 (𝑚𝑜𝑑 18). Kalan 9 olacaktır. 

 Kongrüans bağıntısı yansıma, simetri ve geçişme özelliklerini sağladığı için bir 

denklik bağıntısı oluşturur. Ayrıca denklik bağıntısı, kongrüans bağıntısı olarak da 

isimlendirilebilir. Denklik bağıntısı, denklik sınıfları formunda olacağından bu durum 

denklik sınıfları olarak cebirde yer almaktadır. Örneğin, herhangi bir pozitif tam 

sayının 7 sayısıyla bölümünden kalanlar 0, 1, 2, 3, 4, 5 ve 6 sayıları olacaktır. Burada 

kalan sayı olarak 2 sayısı seçilirse 2, 9, 16, 23, 30, … sayılarının da 7 sayısıyla 

bölümünden kalanlar hep 2 sayısı olacaktır. 2, 9, 16, 23, 30, … sayılarından oluşan 

küme, 7 modülüne göre kalan sınıfları kümesi olarak isimlendirilir ve [2] şeklinde 

gösterilir. 

 Örnek: 10515 sayısının 7 ile bölümünden kalanını bulalım. 

Çözüm:  

10 ≡ 3 (𝑚𝑜𝑑 7), 

102 ≡ 2 (𝑚𝑜𝑑 7), 

103 ≡ 6 (𝑚𝑜𝑑 7), 

104 ≡ 4 (𝑚𝑜𝑑 7), 

105 ≡ 5 (𝑚𝑜𝑑 7), 

106 ≡ 1 (𝑚𝑜𝑑 7), 

(106)85 ∙ 105 = 10515 ≡ 185 ∙ 105 (𝑚𝑜𝑑 7), 

10515 ≡ 5 (𝑚𝑜𝑑 7) olarak bulunur. Kalan 5 olacaktır. 

Kalan Sınıfları 

 7, 22, -12, 73, -66, 110, 41 tam sayılar kümesinden seçilen bu sayılar, 7 

modülüne göre, 7 ≡ 0 (𝑚𝑜𝑑 7), 22 ≡ 1 (𝑚𝑜𝑑 7), −12 ≡ 2 (𝑚𝑜𝑑 7), 73 ≡ 3 (𝑚𝑜𝑑 7), 
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−66 ≡ 4 (𝑚𝑜𝑑 7), 110 ≡ 5 (𝑚𝑜𝑑 7) ve 41 ≡ 6 (𝑚𝑜𝑑 7) olacaktır. Buradan yukarıdaki 

sayıların her birinin, tam olarak 7 modülüne göre 0, 1, 2, 3, 4, 5, ve 6 sayılarından 

birine kongrüent olacağı görülecektir. 7, 22, -12, 73, -66, 110, 41 tam sayılarından 

oluşan kümeye 7 modülüne göre kalan sınıflar kümesi denilecektir. 

 Tanım: 𝑎 herhangi bir tam sayı ve 𝑚 > 0 tam sayısı olmak üzere 𝐴 =

{𝑏: 𝑏 ≡ 𝑎 (𝑚𝑜𝑑 𝑚)} kümesi 𝑚 modülüne göre kalan sınıfları kümesi olarak 

isimlendirilir ve [𝑎] şeklinde gösterilir. 

 Tanım: Tam sayılar kümesinin 𝑅 = {𝑟1, 𝑟2, 𝑟3, … , 𝑟𝑚} kümesini göz önüne 

alalım. ∀ 𝑦 ∈  ℤ için 𝑦 ≡ 𝑟𝑗  (𝑚𝑜𝑑 𝑚) olacak şekilde bir tek 𝑟𝑗 ∈ ℝ varsa ℝ kümesine 𝑚 

modülüne göre bir tam kalan sınıfları sistemi oluşturmaktadır denir. Tanımımıza göre 

tam sayılardan oluşan bir cümle aşağıdaki şartları gerçekliyorsa bir tam kalan sınıfları 

sistemi oluştur demekteyiz. 

i. Bu kümenin tam olarak 𝑚 sayıda elemanı bulunmalıdır. 

ii. Bu kümedeki herhangi iki eleman 𝑚 modülüne göre birbirlerine kongrüent 

olmamalıdır. Yani 𝑖 ≠ 𝑗 için 𝑟𝑖 ≢ 𝑟𝑗  (𝑚𝑜𝑑 𝑚) olmalıdır. 

 Bu durumda 𝑚 modülüne göre ℤ𝑚 kalan sınıfları sistemini 𝑎 şeklinde, 𝑥 ≡

𝑎 (𝑚𝑜𝑑 𝑚) değerini gerçekleyen 𝑥 tam sayılarının bulunduğu kalan sınıfını belirtmek 

üzere ℤ𝑚 = {0, 1, 2, … , 𝑚 − 1} şeklinde göstereceğiz. Örneğin 𝑚 = 5 için kalan 

sınıfları kümesi ℤ5 = {0, 1, 2, 3, 4} şeklinde oluşacaktır. 

Sonuç: ℤ𝑚 = {0, 1, 2, … , 𝑚 − 1} kalan sınıfları kümesini ve 𝑐 herhangi bir sayı olmak 

üzere {0 + 𝑐, 1 + 𝑐, 2 + 𝑐, … , 𝑚 − 1 + 𝑐} kümesi de 𝑚 modülüne göre kalan sınıfları 

kümesi olur. 

Sonuç: ℤ𝑚 = {0, 1, 2, … , 𝑚 − 1} kalan sınıfları kümesini ve 𝑐, 𝑚 tam sayısıyla 

aralarında asal herhangi bir sayı olmak üzere {𝑐 ∙ 0, 𝑐 ∙ 1, 𝑐 ∙ 2, … , 𝑐 ∙ (𝑚 − 1)} kümesi 

de 𝑚 modülüne göre kalan sınıfları kümesi olur. 

 Yukarıda verilen iki sonucun birleşimi, ℤ𝑚 = {𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑚} kalan sınıfları 

kümesini ve 𝑐, 𝑚 tam sayısıyla aralarında asal herhangi bir sayı olmak üzere 

𝑐 ∙ 𝑎1 + 𝑑, 𝑐 ∙ 𝑎2 + 𝑑, 𝑐 ∙ 𝑎3 + 𝑑, … , 𝑐 ∙ 𝑎𝑚 + 𝑑 kümesi de 𝑑 tam sayı olmak üzere, 𝑚 

modülüne göre kalan sınıfları kümesi olur, sonucuna ulaştırır. 
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 Örnek: 𝑎2 ≡ 𝑏2 (𝑚𝑜𝑑 𝑛) olmasının 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) olmasını gerektirmediğini 

gösterelim. 

Çözüm: Örneğimizin sağlanamayacağını aksine ispat metoduyla gösterelim. 52 ≡

42 (𝑚𝑜𝑑 3) tanım gereği, 3|25 − 16 = 9 olacaktır. Ama 5 ≡ 4 (𝑚𝑜𝑑 3) tanım gereği 

3|5 − 4 = 1 ve 3 ∤ 1 olmasından dolayı 5 ≢ 4 (𝑚𝑜𝑑 3) olacaktır. 

 Örnek: 41 sayısının 220 − 1 sayısını böldüğünü gösterelim. 

Çözüm:  

21 ≡ 2 (𝑚𝑜𝑑 41) 

22 ≡ 4 (𝑚𝑜𝑑 41) 

23 ≡ 8 (𝑚𝑜𝑑 41) 

24 ≡ 16 (𝑚𝑜𝑑41) 

25 ≡ 32 ≡ −9 (𝑚𝑜𝑑 41) 

(25)4 ≡ (−9)4 (𝑚𝑜𝑑 41) 

220 ≡ 81 ∙ 81 (𝑚𝑜𝑑 41) 

81 ≡ −1 (𝑚𝑜𝑑41) 

220 ≡ (−1) ∙ (−1) ≡ 1 (𝑚𝑜𝑑 41) 

220 − 1 ≡ 0 (𝑚𝑜𝑑 41) 

son ifadeden tanım gereği, 41|220 − 1 olacaktır. 

 Örnek: 𝑎 bir tek tam sayı olmak üzere 𝑎2 ≡ 1 (𝑚𝑜𝑑 8) olacağını gösterelim. 

Çözüm: 𝑘 ∈  ℤ olmak üzere tek tam sayıların kümesini 𝑎 = 4𝑘 + 1 veya 𝑎 = 4𝑘 + 3 

formatında gösterebiliriz. 

(4𝑘 + 1)2 = 16𝑘2 + 8𝑘 + 1 = 8 ∙ (2𝑘2 + 𝑘) + 1 ≡ 1 (𝑚𝑜𝑑 8)  

(4𝑘 + 3)2 = 16𝑘2 + 24𝑘 + 9 = 8 ∙ (2𝑘2 + 3𝑘 + 1) + 1 ≡ 1 (𝑚𝑜𝑑 8)  

𝑎 bir tek tam sayı olmak üzere 𝑎2 ≡ 1 (𝑚𝑜𝑑 8) olacaktır. 
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 Teorem: (𝑚′, 𝑚′′) = 1, 𝑟′ değerinin 𝑚′ modülüne,  𝑟′′ değerinin 𝑚′′ modülüne 

göre tam kalan sınıfları üzerinden bütün değerleri almak üzere, 𝑟′′𝑚′ + 𝑟′𝑚′′ değeri 

𝑚′𝑚′′ modülüne göre tam kalan sınıflarındaki bütün değerleri alır. 

İspat: 𝑟′′𝑚′ + 𝑟′𝑚′′ değerlerinin sayısının 𝑚′𝑚′′ kadar olduğu açıktır. Bu değerlerden 

herhangi ikisinin 𝑚′𝑚′′ modülüne göre kongrüent olamayacağını göstermeliyiz. 

𝑟1
′′𝑚′ + 𝑟1

′𝑚′′ ≡ 𝑟2
′′𝑚′ + 𝑟2

′𝑚′′ (𝑚𝑜𝑑 𝑚′𝑚′′) olsaydı  𝑚′(𝑟1
′′ − 𝑟2

′′) + 𝑚′′(𝑟1
′ − 𝑟2

′) ≡

0 (𝑚𝑜𝑑 𝑚′𝑚′′) olurdu. Halbuki 𝑚′𝑚′′ ifadesiyle bölünebilme 𝑚′ ifadesiyle 

bölünebilmeyi gerektirdiğinden 𝑚′(𝑟1
′′ − 𝑟2

′′) + 𝑚′′(𝑟1
′ − 𝑟2

′) ≡ 0 (𝑚𝑜𝑑 𝑚′𝑚′′) ifadesi 

𝑚′(𝑟1
′′ − 𝑟2

′′) + 𝑚′′(𝑟1
′ − 𝑟2

′) ≡ 0 (𝑚𝑜𝑑 𝑚′) ve 𝑚′′(𝑟1
′ − 𝑟2

′) ≡ 0 (𝑚𝑜𝑑 𝑚′) olmasını 

gerektirir ki (𝑚′, 𝑚′′) = 1 olduğundan 𝑟1
′ ≡ 𝑟2

′ (𝑚𝑜𝑑 𝑚′) ve 𝑟1
′′ ≡ 𝑟2

′′ (𝑚𝑜𝑑 𝑚′) olurdu. 

Bu durum tam kalan sınıfları tanıma göre mümkün değildir. Böylece 𝑚′𝑚′′ sayıdaki 

sayıların hepsi 𝑚′𝑚′′ modülüne göre bir tam kalan sınıfları sistemi oluştururlar. 

 Teorem: 𝑃(𝑥) = ∑ 𝑐𝑘𝑥𝑘𝑚
𝑘=0  kat sayıları tam sayı olan bir polinom olmak üzere, 

𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) olduğunda 𝑃(𝑎) ≡ 𝑃(𝑏) (𝑚𝑜𝑑 𝑛) eşitliği geçerlidir. 

İspat: 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) ifadesinden 𝑎𝑘 ≡ 𝑏𝑘  (𝑚𝑜𝑑 𝑛) ifadesine ulaşılacaktır. Bu 

eşitlikten de 𝑐𝑘𝑎𝑘 ≡ 𝑐𝑘𝑏𝑘 (𝑚𝑜𝑑 𝑛) ifadesine ulaşılacaktır. Denkliğin her iki tarafının 

toplamı alınırsa ∑ 𝑐𝑘𝑎𝑘𝑚
𝑘=0 ≡ ∑ 𝑐𝑘𝑏𝑘𝑚

𝑘=0  (𝑚𝑜𝑑 𝑛) elde edilecektir. Sonuç olarak  

𝑃(𝑎) ≡ 𝑃(𝑏) (𝑚𝑜𝑑 𝑛) değeri elde edilir. 

Sonuç:  𝑎 sayısı 𝑃(𝑎) ≡ 0 (𝑚𝑜𝑑 𝑛) ifadesinin bir çözümüyse 𝑃(𝑎) ≡ 𝑃(𝑏) (𝑚𝑜𝑑 𝑛) 

olduğunda 𝑏 sayısı da bir çözüm olacaktır. 

 Örnek: 29 ∙ 93 + 17 ∙ 164 sayısının 7 ile bölümünden kalanı bulalım. 

Çözüm: 16 ≡ 2 (𝑚𝑜𝑑 7) olduğundan 164 ≡ 24 ≡ 2 (𝑚𝑜𝑑 7) ve 17 ≡ 3 (𝑚𝑜𝑑 7) 

olduğundan 17 ∙ 164 ≡ 3 ∙ 2 ≡ 6 (𝑚𝑜𝑑 7) olacağı görülecektir. Benzer şekilde 29 ≡

1 (𝑚𝑜𝑑 7) ve 93 ≡ 2 (𝑚𝑜𝑑 7) olacağından 29∙ 93 ≡ 2 ∙ 1 ≡ 2 (𝑚𝑜𝑑 7) olacaktır.  

29 ∙ 93 + 17 ∙ 164 ≡ 2 + 6 ≡ 1 (𝑚𝑜𝑑 7) elde edilir ki kalan sayının 1 olduğu görülür. 

 Bir tam sayının başka bir tam sayıya bölünmesini sağlayan tanımı aşağıda 

vereceğiz. Sayı sistemimizin temel alındığı özel bir durumu kapsayan notasyonu 

aşağıda bulacaksınız. 
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 Tanım: 𝑏 > 1, 𝑁 herhangi bir pozitif tam sayı ve 𝑎𝑘 değerleri 0, 1, 2, … , (𝑏 − 1) 

değerlerinden biri olmak üzere, 

𝑁 = 𝑎𝑚𝑏𝑚 + 𝑎𝑚−1𝑏𝑚−1 + ⋯ + 𝑎2𝑏2 + 𝑎1𝑏1 + 𝑎0𝑏0 

şeklinde ifade edilebilir. Yeniden düzenleme yapıldığında 𝑁 = (𝑎𝑚𝑎𝑚−1 … 𝑎2𝑎1𝑎0)𝑏 

şeklinde olacaktır. Örneğin,  

105 = 1 ∙ 26 + 1 ∙ 25 + 0 ∙ 24 + 1 ∙ 23 + 0 ∙ 22 + 0 ∙ 21 + 1 ∙ 20  

105 = (1101001)2 olmaktadır. 

Asal Kalan Sınıfları 

 Kongürans teorisinde bir 𝑚 modülüyle aralarında asal olan sayılar önemli bir 

yere sahiptir. Eğer {𝑟1, 𝑟2, … , 𝑟𝑚} kümesi (𝑚𝑜𝑑 𝑚) değerine göre bir tam kalan sınıfları 

sistemi ve (𝑘, 𝑚) = 1 oluyorsa {𝑘𝑟1, 𝑘𝑟2, … , 𝑘𝑟𝑚} kümesi de (𝑚𝑜𝑑 𝑚) değerine göre bir 

tam kalan sınıfları sistemi oluştur. 

 Teorem: 𝑥 ≡ 𝑦 (𝑚𝑜𝑑 𝑚) ise (𝑥, 𝑚) = (𝑦, 𝑚) eşitliği geçerlidir. 

İspat: (𝑥, 𝑚) = 𝑑 ve (𝑦, 𝑚) = 𝑒 olduğunu kabul edelim. 𝑥 ≡ 𝑦 (𝑚𝑜𝑑 𝑚) olduğu için en 

az bir 𝑞 ∈ ℤ, 𝑥 − 𝑦 = 𝑚𝑞 eşitliğini gerçekleyecektir. 𝑑|𝑥 ve 𝑑|𝑚 olduğundan dolayı 𝑑|𝑦 

olacak ve 𝑑|𝑒 sonucuna ulaşılacaktır. Benzer şekilde 𝑒|𝑑 elde edilecek ve iki ifadeden 

𝑑 = 𝑒 sonucu elde edilecektir.  

 İki tam kalan sınıfları sisteminde 𝑚 sayısıyla aralarında asal olan aynı sayıda 

tam sayı bulunduğu ve bu tam sayıların ikişer ikişer 𝑚 modülüne göre birbirlerine 

göre kongürent olamayacağı açıktır. 6 modülüne göre {1,2,3,4,5,6} ve 

{7,8, −3, −2,17,18} tam kalan sınıflarında 1-5 ve 7-17 tam sayı çiftleri 6 sayısıyla 

aralarında asaldır. Ayrıca 1 ≡ 7 (𝑚𝑜𝑑 6) ve 5 ≡ 17 (𝑚𝑜𝑑 6) olduğuna da dikkat 

edilmelidir. 𝑚 modülüyle aralarında asal kalan sınıfları sisteminin, 𝑚 modülüne göre 

tam kalan sınıfları sisteminden 𝑚 ile aralarında asal olmayan tam sayıların atılmasıyla 

elde edilebileceği açıktır.  

Lineer Kongrüanslar 

 Cebirsel denklemlerin çözümüne benzer, bir kongrüansın çözüm problemini 

ele alabiliriz. Bu bölümde 

𝑓(𝑥) = 𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1 + ⋯ + 𝑎𝑛𝑥0, 
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kat sayıları tam sayı olan bir polinom olmak üzere, kongrüans denklemlerinin tam sayı 

çözümlerini bulmaya çalışacağız. 𝑢 ∈ ℤ için 𝑓(𝑢) ≡ 0 (𝑚𝑜𝑑 𝑚) oluyorsa 𝑢 tam 

sayısına 𝑓(𝑥) ≡ 0 (𝑚𝑜𝑑 𝑚) kongrüansının bir çözümü denir. 

 Sayılar teorisi içerisinde lineer kongrüanslar önemli bir yer tutmaktadır. 𝑎𝑥 ≡

𝑏 (𝑚𝑜𝑑 𝑛) biçimindeki bir denkleme lineer kongrüans denir. Bu şekilde bir denklemin 

çözümünden kastedilen 𝑎𝑥0 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) olacak şekilde bir 𝑥0 tam sayısının var 

olmasıdır. Kongrüans tanımı gereği 𝑎𝑥0 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) olabilmesi için gerek ve yeter 

şart 𝑛|𝑎𝑥0 − 𝑏 yazılabilmesidir. Başka bir ifadeyle, 𝑎𝑥0 − 𝑏 = 𝑛𝑦0 olacak şekilde bazı 

𝑦0 tam sayılarının bulunacak olmasıdır. 𝑎𝑥0 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) lineer bağıntısını sağlayacak 

tüm tam sayıları bulma problemi 𝑎𝑥 − 𝑛𝑦 = 𝑏 lineer Diophantine denkleminin tüm 

çözümlerini elde etme problemine dönüşecektir. 𝑎𝑥0 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) bağıntısının 𝑛 

modülünde eş olan iki çözümünü, normal anlamda eşit olmasalar bile “eşit” olarak ele 

almak uygun olacaktır. Örneğin, 𝑥 = 3 ve 𝑥 = −9 değerlerinin her ikisi de 3𝑥 ≡

9 (𝑚𝑜𝑑 12) denkliğini sağlamaktadır. 3 ≡ −9 (𝑚𝑜𝑑 12) olduğundan farklı çözümler 

olarak kabul görmezler. 

 Tanım: 𝑎, 𝑏, 𝑚 > 0 ve 𝑥 değişkeni tam sayı olmak üzere, 𝑎𝑥 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) 

formundaki kongrüanslara, bir değişkenli lineer kongrüanslar denir. 

 Teorem: 𝑎 ≠ 0, 𝑏 ≠ 0, 𝑐 tam sayılar ve (𝑥0, 𝑦0) ikilisi 𝑎𝑥 + 𝑏𝑦 = 𝑐 lineer 

denkleminin bir çözümü olmak üzere, 𝑚 = |𝑏| düşünüldüğünde 𝑥0, 𝑎𝑥 ≡ 𝑐 (𝑚𝑜𝑑 𝑚) 

lineer kongrüans denkleminin bir çözümüdür. 

İspat: (𝑥0, 𝑦0) ikilisi 𝑎𝑥 + 𝑏𝑦 = 𝑐 lineer denkleminin bir çözümü olsun. Bu durumda 

𝑏|𝑎𝑥0 − 𝑐 olacaktır. 𝑚 = |𝑏| düşünüldüğünde, 𝑥0 değeri 𝑎𝑥 ≡ 𝑐 (𝑚𝑜𝑑 𝑚) denkleminin 

bir çözümü olacaktır. Karşıt tersi olarak 𝑥0 değeri 𝑎𝑥 ≡ 𝑐 (𝑚𝑜𝑑 𝑚) denkleminin bir 

çözümü olsun. 𝑚 = |𝑏| değeri 𝑎𝑥0 − 𝑐 değerini bölecektir. Bu durumda, bazı 𝑦0 

değerleri için 𝑎𝑥0 − 𝑐 = 𝑏𝑦0 eşitliği sağlanacaktır. Sonuçta (𝑥0, 𝑦0) ikilisi 𝑎𝑥 + 𝑏𝑦 = 𝑐 

lineer denkleminin bir çözümü olacaktır.  

 Örnek: 221𝑥 + 35𝑦 = 11 Diophantine denklemini lineer kongrüans 

kullanarak çözümünü bulalım. 

Çözüm: 221𝑥 + 35𝑦 = 11 Diophantine denklemi kullanılarak 221𝑥 ≡ 11 (𝑚𝑜𝑑 35) 

yazılabilir. Eşitlik düzenlendiğinde 𝑥 ≡ 1 (𝑚𝑜𝑑 35) elde edilir. Kongrüans tanımından 
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bazı tam sayılar için 𝑥 = 35𝑡 + 1 eşitliğine ulaşılacaktır. 𝑥0 = 1, 𝑦0 =
1

35
(11 − 221 ∙

1) = −6 olacaktır. Böyleyece, 𝑥 = 35𝑡 + 1 ve 𝑦 = −221𝑡 − 6  genel çözüm olacaktır. 

 Örnek: 5𝑥 ≡ 2 (𝑚𝑜𝑑 26) Diophantine denklemini lineer kongrüans 

kullanarak çözümünü bulalım. 

Çözüm: 5𝑥 ≡ 2 (𝑚𝑜𝑑 26) kongrüansı kullanılarak 5𝑥 + 26𝑦 = 2 Diophantine 

denklemi yazılabilir. (5,26) = 1 ve lineerlik özelliğinden 1 = 5𝑎 + 26𝑏 eşitliği elde 

edilir. 𝑎 = (−5) seçilerek 𝑥0 = (−10) ve bazı tam sayılar için  𝑥 = −10 + 26𝑡 

olacaktır. 𝑥 ≡ −10 (𝑚𝑜𝑑 26) olarak çözüm elde edilecektir. 

 Yukarıda yer alan iki örnekten lineer kongrüanslar ve Diophantine 

eşitliklerinin birbiriyle ilişkili olduğunu söylemek mümkündür. 

 Teorem: (𝑚, 𝑎) = 1, 𝑎𝑥 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) lineer kongrüansının 𝑥 = 𝑥0 olan bir tek 

çözümü vardır. Bütün çözümler 𝑡 ∈ ℤ olmak üzere 𝑥 = 𝑥0 + 𝑡𝑚 şeklinde olacaktır. 

İspat: 𝑥0 herhangi bir çözüm, 𝑎𝑥 − 𝑎𝑥0 ≡ 𝑏 − 𝑏 ≡ 0 (𝑚𝑜𝑑 𝑚), 𝑎(𝑥 − 𝑥0) ≡ 0 (𝑚𝑜𝑑 𝑚) 

olur. (𝑚, 𝑎) = 1 olduğundan 𝑥 − 𝑥0 ≡ 0 (𝑚𝑜𝑑 𝑚) elde edilir. Bu durumsa 𝑡 ∈ ℤ olmak 

üzere, bütün çözümlerin 𝑥 = 𝑥0 + 𝑡𝑚 şeklinde olacağını gösterecektir. 

 Teorem: 𝑎 ≠ 0, 𝑏 ≠ 0, 𝑚 > 0 tam sayılar, 𝑎𝑥 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) lineer kongrüans 

denkleminin bir çözümünün bulunması için gerek ve yeter şart (𝑚, 𝑎)|𝑏 olmalıdır.  

İspat: (𝑚, 𝑎) = 𝑑, 𝑎𝑥 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) lineer kongrüansının 𝑥0 gibi bir tek çözümünün 

olduğunu varsayalım. O zaman, 𝑎𝑥0 ≡ 𝑏 (𝑚𝑜𝑑 𝑚), 𝑡 ∈ ℤ olmak üzere, 𝑎𝑥0 = 𝑏 + 𝑡𝑚 

olacaktır. 𝑑|𝑎 ve 𝑑|𝑚 olduğundan 𝑑|𝑏 elde edilir. 

(𝑚, 𝑎) = 𝑑|𝑏 ise 𝑏 = 𝑑𝑏1 ve (
𝑎

𝑑
,

𝑚

𝑑
) = 1 olmalıdır. Bu durumda 𝑎 = 𝑑𝑎1 ve 𝑚 = 𝑑𝑚1 

ve 𝑎1𝑥 ≡ 𝑏1 (𝑚𝑜𝑑 𝑚1) olacaktır. (𝑎1, 𝑚1) = 1 olduğundan 𝑎𝑥 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) lineer 

kongrüans denkleminin bir çözümü vardır. 

Sonuç: (𝑚, 𝑎) = 𝑑 ve 𝑑|𝑏 olduğunda 𝑎𝑥 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) lineer kongrüans denkleminin 

(𝑚, 𝑎) = 𝑑 tane çözümü vardır. Bu çözümler 𝑥0, denklemin tek çözümüyse, bütün 

çözümler 𝑥 ≡ 𝑥0 + (
𝑚

𝑑
) 𝑡 (𝑚𝑜𝑑 𝑚) şeklinde olacaktır. 

 Örnek: 8𝑥 ≡ 16 (𝑚𝑜𝑑 24) lineer kongrüans denkleminin çözümünü bulalım. 
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Çözüm: (8, 24) = 8 ve 8|16 ifadelerinden 𝑥0 = 2 çözümü elde edilir. Bütün çözümler 

𝑡 ∈ ℤ olmak üzere 𝑥 = 𝑥0 + 𝑡𝑚 = 2 + (
24

8
) 𝑡 = 2 + 3𝑡 şeklinde olacaktır. Çözümler 

𝑥 ≡ 2,5,8,11,14,17,20,23 (𝑚𝑜𝑑 24) şeklinde olacaktır. Eğer, lineer kongrüans 

denklemi 8𝑥 ≡ 16 (𝑚𝑜𝑑 23) şeklinde olsaydı, (8, 23) = 1 olduğundan 𝑥0 = 2 şeklinde 

tek çözümü olacaktı.    

Kongrüans Sistemleri 

 Küçük sayılar için bir kongrüansın çözümü 𝑚 modülüne göre bütün kalan 

sınıfları denenerek bulunabilir. Eğer sayılar büyükse bir lineer kongrüansın 

çözümlerinin bulunması oldukça zor olacaktır. 𝑎, 𝑏, 𝑐 ∈ ℤ olmak üzere 𝑎𝑥 + 𝑏𝑦 = 𝑐 

denkleminin çözüm kümesini sağlayan (𝑥, 𝑦) tam sayı çiftlerini bulma probleminin 

𝑎𝑥 ≡ 𝑐 (𝑚𝑜𝑑 𝑏) veya 𝑏𝑦 ≡ 𝑐 (𝑚𝑜𝑑 𝑎) kongrüansının çözüm kümesini bulmaya denk 

olduğu söylenebilir.  

 Teorem: 𝑎, 𝑏 ∈ ℤ, 𝑚 ≠ 0 ∈ ℤ, 𝑛 ≠ 0 ∈ ℤ olmak üzere, 𝑥 ≡ 𝑎 (𝑚𝑜𝑑 𝑚) ve    𝑥 ≡

𝑏 (𝑚𝑜𝑑 𝑛) lineer kongrüans sisteminin; 

i. 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 (𝑚, 𝑛)) olduğunda çözümü vardır, 

ii. 𝑥 ≡ 𝑥0 (𝑚𝑜𝑑 [𝑚, 𝑛]) olan bir tek ortak çözümü vardır. 

İspat: 

i. 𝑥 ≡ 𝑎 (𝑚𝑜𝑑 𝑚) olduğunda, 𝑡 ∈ ℤ olmak üzere 𝑥 = 𝑎 + 𝑡𝑚 çözümleri vardır. 

𝑥 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) ise 𝑎 + 𝑡𝑚 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) ve 𝑚𝑡 ≡ 𝑏 − 𝑎 (𝑚𝑜𝑑 𝑛) elde edilir. 

Bu lineer kongrüansın bir çözümünün bulunması için (𝑚, 𝑛)|(𝑏 − 𝑎) yani 

𝑎 ≡ 𝑏 (𝑚𝑜𝑑 (𝑚, 𝑛)) olmasını gerektirir ki bu da istenilendir. 

ii. (𝑚, 𝑛) = 𝑑 olmak üzere 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑑) şartı altında 𝑥 ≡ 𝑎 (𝑚𝑜𝑑 𝑚) ve       

𝑥 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) lineer kongrüans sisteminin çözümünü bulmak istiyoruz. 

𝑥 ≡ 𝑎 (𝑚𝑜𝑑 𝑚) olduğunda, 𝑡 ∈ ℤ olmak üzere 𝑥 = 𝑎 + 𝑡𝑚 çözümleri vardır. 

𝑥 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) ise 𝑎 + 𝑡𝑚 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) ve 𝑚𝑡 ≡ 𝑏 − 𝑎 (𝑚𝑜𝑑 𝑛) elde edilir. 

Buradan 𝑞 ∈ ℤ olmak üzere 𝑚𝑡 = 𝑏 − 𝑎 + 𝑛𝑞 olacaktır.  
𝑚

𝑑
𝑡 =

𝑏−𝑎

𝑑
+

𝑛

𝑑
𝑞 

ifadesinden  
𝑚

𝑑
𝑡 ≡

𝑏−𝑎

𝑑
 (𝑚𝑜𝑑 

𝑛

𝑑
) elde edilecektir. (

𝑚

𝑑
,

𝑛

𝑑
) = 1 olduğundan bu 

kongrüans sisteminin 𝑡0 gibi tek çözümü vardır. Dolayısıyla 𝑥 = 𝑎 + 𝑡𝑚 

ifadesinden 𝑥0 = 𝑎 + 𝑚𝑡0 olacaktır. 𝑥0 değerinin kongrüans sisteminin 

ortak çözümü olduğunu göstermeliyiz. 𝑡0, çözümü için 𝑡 ≡ 𝑡0(𝑚𝑜𝑑 
𝑛

𝑑
) ve 𝑞 ∈
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ℤ olmak üzere 𝑡 = 𝑡0 + 𝑞
𝑛

𝑑
 olacaktır. Elde edilen bu değeri 𝑥 = 𝑎 + 𝑡𝑚 

eşitliğinde yerine yazarsak 𝑥 = 𝑎 + 𝑚 (𝑡0 + 𝑞
𝑛

𝑑
) = 𝑎 + 𝑚𝑡0 + 𝑞

𝑚𝑛

𝑑
 ve 𝑥 =

𝑥0 + 𝑞
𝑚𝑛

𝑑
 ve 𝑥 ≡ 𝑥0 (𝑚𝑜𝑑 

𝑚𝑛

𝑑
) olacaktır. 𝑚𝑛 = (𝑚, 𝑛)[𝑚, 𝑛] eşitliğinden   

𝑥 ≡ 𝑥0 (𝑚𝑜𝑑 [𝑚, 𝑛])elde edilir.  

Sonuç: Aşağıda verilen kongrüans sisteminin çözümünün olabilmesi için gerek ve 

yeter şart 𝑖 ≠ 𝑗olan her 𝑖 değeri için (𝑚𝑖 , 𝑚𝑗)|(𝑎𝑖 − 𝑎𝑗) olmasıdır. 

𝑥 ≡ 𝑎1 (𝑚𝑜𝑑 𝑚1), 

𝑥 ≡ 𝑎2 (𝑚𝑜𝑑 𝑚2), 

𝑥 ≡            ⋮             , 

𝑥 ≡ 𝑎𝑟 (𝑚𝑜𝑑 𝑚𝑟). 

Bir çözüm bulunduğunda bu çözüm 𝑚 = [𝑚1, 𝑚2, ⋯ 𝑚𝑟] modülüne göre bir tekdir. 

 Örnek: 𝑥 ≡ 5 (𝑚𝑜𝑑 11) ve 𝑥 ≡ 3 (𝑚𝑜𝑑 23) sisteminin ortak çözümünü 

bulalım. 

Çözüm: Verilen kongrüans sisteminin, (11,23)|5 − 3 = 2 olduğundan çözümü vardır. 

Sistemin ilk denkleminden, 𝑡 ∈ ℤ olmak üzere 𝑥 = 5 + 11𝑡 elde edilir. Bu eşitliği 

sistemin ikinci denkleminde yerine yazarsak 

5 + 11𝑡 ≡ 3 (𝑚𝑜𝑑 23), 

11𝑡 ≡ 3 − 5 (𝑚𝑜𝑑 23), 

2 ∙ 11𝑡 ≡ 2 ∙ (−2)(𝑚𝑜𝑑 23), 

22𝑡 ≡ −4 (𝑚𝑜𝑑 23), 

−𝑡 ≡ −4 (𝑚𝑜𝑑 23), 

𝑡 ≡ 4 (𝑚𝑜𝑑 23), 

𝑞 ∈ ℤ olmak üzere 𝑡 = 4 + 23𝑞 elde edilir. Bu değeri yerine yazdığımızda                         

𝑥 = 5 + 11𝑡 = 5 + 11(4 + 23𝑞) = 49 + (11 ∙ 23)𝑞 sonucuna ulaşılır. Eşitlik 

düzenlendiğinde, 𝑥 ≡ 49 (𝑚𝑜𝑑 11 ∙ 23) elde edilir. Bu sonuç sistemin ortak 

çözümüdür. 
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 Teorem (Çin Kalan Teoremi): 𝑚1, 𝑚2, … , 𝑚𝑟 ∈ ℤ+ ikişer ikişer aralarında asal 

ve 𝑎1, 𝑎2, … , 𝑎𝑟  ∈ ℤ olsun. Bu durumda, 

𝑥 ≡ 𝑎1 (𝑚𝑜𝑑 𝑚1), 

𝑥 ≡ 𝑎2 (𝑚𝑜𝑑 𝑚2), 

𝑥 ≡            ⋮             , 

𝑥 ≡ 𝑎𝑟 (𝑚𝑜𝑑 𝑚𝑟). 

sisteminin ortak çözümleri vardır. Ayrıca, bu çözüm 𝑚1 ∙ 𝑚2 ∙ ⋯ ∙ 𝑚𝑟 modülüne göre 

bir tekdir. 

İspat: 𝑚 = 𝑚1 ∙ 𝑚2 ∙ ⋯ ∙ 𝑚𝑟, 𝑀𝑗 = 𝑚|𝑚𝑗 olmak üzere, 𝑖 ≠ 𝑗 için 𝑚𝑖|𝑀𝑗 ve (𝑚𝑗 , 𝑀𝑗) = 1 

olarak bulunur. Buna göre 𝑀𝑗𝑥𝑗 ≡ 1 (𝑚𝑜𝑑 𝑚𝑗) olacak şekilde bir tek 𝑥𝑗 sayısı vardır. 

Bu durumda 𝑖 ≠ 𝑗 olduğundan 𝑀𝑗𝑥𝑗 ≡ 0 (𝑚𝑜𝑑 𝑚𝑖) olacaktır.  

 Şimdi 𝑥0 = ∑ 𝑀𝑗
𝑟
𝑗=1 𝑥𝑗𝑎𝑗 sayısını göz önüne alalım. Kabulümüze göre her 𝑖 

değeri için 𝑀𝑖𝑥𝑖𝑎𝑖 ≡ 𝑎𝑖  (𝑚𝑜𝑑 𝑚𝑖), 𝑖 ≠ 𝑗 ve 𝑀𝑗 ≡ 0 (𝑚𝑜𝑑 𝑚𝑖) olduğundan, 

𝑥0 = ∑
𝑚

𝑚𝑗

𝑟
𝑗=1 𝑥𝑗𝑎𝑗 ≡

𝑚

𝑚𝑖
𝑥𝑖𝑎𝑖  (𝑚𝑜𝑑 𝑚𝑖) bulunacaktır. Bu durum 𝑥0 değerinin 𝑖 değerinci 

kongrüansı sağladığını dolayısıyla sistemin bir ortak çözümü olduğunu gösterir. Bu 

ortak çözümün 𝑚 modülüne göre bir tek olduğunu göstermeliyiz. 𝑥0 ve 𝑥𝑖 sistemin 

herhangi iki çözümüyse her 𝑖 değeri için 𝑥1 ≡ 𝑎𝑖 ≡ 𝑥0 (𝑚𝑜𝑑 𝑚𝑖), , 𝑖 ≠ 𝑗 için (𝑚𝑖 , 𝑚𝑗) =

1 olduğundan 𝑚|(𝑥1 − 𝑥0) ve böylece 𝑥1 ≡ 𝑥0 (𝑚𝑜𝑑 𝑚) elde edilir. Bu bir çözümün 

olması durumunda 𝑚 modülüne göre bir tek olduğunu gösterir. 

 Örnek: 𝑥 ≡ 2 (𝑚𝑜𝑑 3), 𝑥 ≡ 4 (𝑚𝑜𝑑 5) ve 𝑥 ≡ 5 (𝑚𝑜𝑑 7) lineer kongrüans 

sisteminin çözüm kümesini bulalım. 

Çözüm: 𝑚 = 3 ∙ 5 ∙ 7 = 105, 𝑀1 =
105

3
= 35, 𝑀2 =

105

5
= 21 ve 𝑀3 =

105

7
= 15 

olacaktır. 𝑀𝑟𝑥𝑟 ≡ 1 (𝑚𝑜𝑑 𝑚𝑟) durumları sonuçlandırılmalıdır.  

35𝑥1 ≡ 1 (𝑚𝑜𝑑 3), 

21𝑥2 ≡ 1 (𝑚𝑜𝑑 5), 

15𝑥3 ≡ 1 (𝑚𝑜𝑑 7), 
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kongrüans sistem çözümleri bulunmalıdır. 𝑥1 = 2, 𝑥2 = 1 ve 𝑥3 = 1 olarak bulunur. 

Kongrüans sisteminin bir çözümü 𝑥0 = 𝑎1𝑀1𝑥1 + 𝑎2𝑀2𝑥2 + 𝑎3𝑀3𝑥3 = 2 ∙ 35 ∙ 2 + 4 ∙

21 ∙ 1 + 5 ∙ 15 ∙ 1 = 140 + 84 + 75 = 299 ve 𝑥0 = 299 ≡ 89 (𝑚𝑜𝑑 105) olacaktır. 

 Teorem: 𝑚 = 𝑚1 ∙ 𝑚2 ∙ ⋯ ∙ 𝑚𝑟, 𝑚1, 𝑚2, ⋯ , 𝑚𝑟 sayıları ikişer ikişer aralarında 

asal olsun. O zaman 𝑓(𝑥) ≡ 0 (𝑚𝑜𝑑 𝑚) kongrüansının bir çözümü olması için gerek 

ve yeter şart 𝑓(𝑥) ≡ 0 (𝑚𝑜𝑑 𝑚𝑖) kongrüanslarının bir çözümünün bulunmasıdır. 

𝑁(𝑚) ve 𝑁(𝑚𝑖) değerleri sırasıyla 𝑓(𝑥) ≡ 0 (𝑚𝑜𝑑 𝑚) ve 𝑓(𝑥) ≡ 0 (𝑚𝑜𝑑 𝑚𝑖) 

çözümlerinin sayısını belirtmek üzere 𝑁(𝑚) = 𝑁(𝑚1)𝑁(𝑚2) … 𝑁(𝑚𝑟) eşitliği 

sağlanır.      

İspat: 𝑓(𝑥0) ≡ 0 (𝑚𝑜𝑑 𝑚) ve 𝑚𝑖|𝑚 olduğundan 𝑓(𝑥0) ≡ 0 (𝑚𝑜𝑑 𝑚𝑖) olacaktır. Buna 

göre 𝑓(𝑥) ≡ 0 (𝑚𝑜𝑑 𝑚) ifadesinin her çözümü 𝑓(𝑥) ≡ 0 (𝑚𝑜𝑑 𝑚𝑖) ifadesinin de bir 

çözümü olacaktır. Karşıt olarak 𝑥𝑖 𝑓(𝑥) ≡ 0 (𝑚𝑜𝑑 𝑚𝑖) sisteminin bir çözümü olsun, 

Çin Kalan Teoremine göre 𝑥0 ≡ 𝑥𝑖  (𝑚𝑜𝑑 𝑚𝑖) olacak şekilde bir 𝑥0 tam sayısı vardır. 𝑥0 

değeri için 𝑓(𝑥0) ≡ 𝑓(𝑥𝑖) ≡ 0 (𝑚𝑜𝑑 𝑚𝑖) olacaktır. Modüller ikişer ikişer aralarında 

asal oldukları için 𝑓(𝑥0) ≡ 0 (𝑚𝑜𝑑 𝑚) olacaktır. Ayrıca, 𝑓(𝑥) ≡ 0 (𝑚𝑜𝑑 𝑚𝑖) 

kongrüansların her bir çözümü için 𝑥0 ≡ 𝑥𝑖  (𝑚𝑜𝑑 𝑚𝑖) kongrüansını gerçekleyen bir 

tek 𝑥0 tam sayısını verdiğini biliyoruz. Her bir 𝑥𝑖 değerinin 𝑁(𝑚𝑖) tane çözümünü 

ortaya koyarken 𝑥0 ≡ 𝑥𝑖  (𝑚𝑜𝑑 𝑚𝑖) ve 𝑓(𝑥) ≡ 0 (𝑚𝑜𝑑 𝑚𝑖) kongrüanslarını sağlayan 

𝑥0 tam sayılarının sayısının 𝑁(𝑚1)𝑁(𝑚2) … 𝑁(𝑚𝑟) olacağı sonucuna ulaşılacaktır. 

 Örnek: 2𝑥 ≡ 3 (𝑚𝑜𝑑 5), 4𝑥 ≡ 2 (𝑚𝑜𝑑 6) ve 3𝑥 ≡ 2 (𝑚𝑜𝑑 7) lineer kongrüans 

sisteminin çözüm kümesini bulalım. 

Çözüm:  

1.adım: 

2𝑥 ≡ 3 (𝑚𝑜𝑑 5), 6𝑥 ≡ 9 (𝑚𝑜𝑑 5), 𝑥 ≡ 4 (𝑚𝑜𝑑 5) olur.  

4𝑥 ≡ 2 (𝑚𝑜𝑑 6), 2𝑥 ≡ 1 (𝑚𝑜𝑑 3), 4𝑥 ≡ 2 (𝑚𝑜𝑑 3), 𝑥 ≡ 2 (𝑚𝑜𝑑 3), 𝑥 ≡ 2 (𝑚𝑜𝑑 6) 

olur. Ayrıca (4, 6) = 2 olduğundan 𝑥 +
6

2
≡ 2 + 3 ≡ 5 (𝑚𝑜𝑑 6) diğer bir çözümü 

olacaktır. 

3𝑥 ≡ 2 (𝑚𝑜𝑑 7), 15𝑥 ≡ 10 (𝑚𝑜𝑑 7), 𝑥 ≡ 3 (𝑚𝑜𝑑 7) olur. 

2.adım: 
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𝑚 = 5 ∙ 6 ∙ 7 = 210, 𝑀1 =
210

5
= 42, 𝑀2 =

210

6
= 35 ve 𝑀3 =

210

7
= 30 olacaktır. 

𝑀𝑟𝑥𝑟 ≡ 1 (𝑚𝑜𝑑 𝑚𝑟) durumları sonuçlandırılmalıdır.  

42𝑥1 ≡ 1 (𝑚𝑜𝑑 5), 

35𝑥2 ≡ 1 (𝑚𝑜𝑑 6), 

30𝑥3 ≡ 1 (𝑚𝑜𝑑 7), 

kongrüans sistem çözümleri bulunmalıdır. 𝑥1 = 3, 𝑥2 = 5 ve 𝑥3 = 4 olarak bulunur.  

3.adım: 

Kongrüans sisteminin çözümleri 𝑥0 = 𝑎1𝑀1𝑥1 + 𝑎2𝑀2𝑥2 + 𝑎3𝑀3𝑥3 = 4 ∙ 42 ∙ 3 + 2 ∙

35 ∙ 5 + 3 ∙ 30 ∙ 4 = 504 + 350 + 360 = 1214 ve 𝑥0 = 1214 ≡ 164 (𝑚𝑜𝑑 210) 

olacaktır. 𝑥1 = 𝑎1𝑀1𝑥1 + 𝑎2𝑀2𝑥2 + 𝑎3𝑀3𝑥3 = 4 ∙ 42 ∙ 3 + 5 ∙ 35 ∙ 5 + 3 ∙ 30 ∙ 4 =

504 + 875 + 360 = 1739 ve 𝑥1 = 1739 ≡ 59 (𝑚𝑜𝑑 210) olacaktır.  

Kongrüans sisteminin çözümlerinin sayısı, 𝑁(210) = 𝑁(5)𝑁(6)𝑁(7) = 1 ∙ 2 ∙ 1 = 2 

olur. 

 Örnek: 3𝑥 + 4𝑦 ≡ 5 (𝑚𝑜𝑑 8) lineer kongrüans sisteminin çözüm kümelerini 

bulalım. 

Çözüm: 3𝑥 ≡ 5 − 4𝑦 (𝑚𝑜𝑑 8), (3, 8) = 1 ve 1|(5 − 4𝑦) olduğundan dolayı sistemin bir 

tek çözümü vardır. 8 modülüne göre 𝑦 = 0, 1, 2, 3, 4, 5, 6, 7 değerlerini alacaktır.  

1.çözüm: 𝑦 = 0 için 3𝑥 ≡ 5 (𝑚𝑜𝑑 8), 9𝑥 ≡ 15 (𝑚𝑜𝑑 8), 𝑥 ≡ 7 (𝑚𝑜𝑑 8) olacaktır. 

2.çözüm: 𝑦 = 1 için 3𝑥 ≡ 5 − 4 (𝑚𝑜𝑑 8), 9𝑥 ≡ 3 (𝑚𝑜𝑑 8), 𝑥 ≡ 3 (𝑚𝑜𝑑 8) olacaktır. 

3.çözüm: 𝑦 = 2 için 3𝑥 ≡ 5 − 8 (𝑚𝑜𝑑 8), 9𝑥 ≡ 15 (𝑚𝑜𝑑 8), 𝑥 ≡ 7 (𝑚𝑜𝑑 8) olacaktır. 

4.çözüm: 𝑦 = 3 için 3𝑥 ≡ 5 − 12 (𝑚𝑜𝑑 8), 9𝑥 ≡ 1 (𝑚𝑜𝑑 8), 𝑥 ≡ 3 (𝑚𝑜𝑑 8) olacaktır. 

5.çözüm: 𝑦 = 4 için 3𝑥 ≡ 5 − 16 (𝑚𝑜𝑑 8), 9𝑥 ≡ 15 (𝑚𝑜𝑑 8), 𝑥 ≡ 7 (𝑚𝑜𝑑 8) olacaktır. 

6.çözüm: 𝑦 = 5 için 3𝑥 ≡ 5 − 20 (𝑚𝑜𝑑 8), 9𝑥 ≡ 3 (𝑚𝑜𝑑 8), 𝑥 ≡ 3 (𝑚𝑜𝑑 8) olacaktır. 

7.çözüm: 𝑦 = 6 için 3𝑥 ≡ 5 − 24 (𝑚𝑜𝑑 8), 9𝑥 ≡ 15 (𝑚𝑜𝑑 8), 𝑥 ≡ 7 (𝑚𝑜𝑑 8) olacaktır. 

8.çözüm: 𝑦 = 7 için 3𝑥 ≡ 5 − 28 (𝑚𝑜𝑑 8), 9𝑥 ≡ 3 (𝑚𝑜𝑑 8), 𝑥 ≡ 3 (𝑚𝑜𝑑 8) olacaktır. 

 3𝑥 + 4𝑦 ≡ 5 (𝑚𝑜𝑑 8) lineer kongrüans sistemi, 𝑦 tam sayısının herhangi bir 

değerine karşılık 𝑥 ≡ 3 (𝑚𝑜𝑑 8) ya da 𝑥 ≡ 7 (𝑚𝑜𝑑 8) olacaktır. 
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 Teorem: 𝑎𝑥 + 𝑏𝑦 ≡ 𝑟 (𝑚𝑜𝑑 𝑛) ve 𝑐𝑥 + 𝑑𝑦 ≡ 𝑠 (𝑚𝑜𝑑 𝑛) lineer kongrüans 

sistemleri, (𝑎𝑑 − 𝑏𝑐, 𝑛) = 1 olduğunda modül 𝑛 değerine göre bir çözüme sahiptir. 

İspat: 𝑎𝑥 + 𝑏𝑦 ≡ 𝑟 (𝑚𝑜𝑑 𝑛) kongrüansı 𝑑, 𝑐𝑥 + 𝑑𝑦 ≡ 𝑠 (𝑚𝑜𝑑 𝑛) kongrüansı 𝑏 tam 

sayılarıyla çarpılıp, çıkarma işlemi yapıldığında (𝑎𝑑 − 𝑏𝑐)𝑥 ≡ (𝑑𝑟 − 𝑏𝑠) (𝑚𝑜𝑑 𝑛) 

kongrüansı elde edilir. 𝑡 sayısı, (𝑎𝑑 − 𝑏𝑐) sayısının 𝑛 modülüne göre tersi ve 

(𝑎𝑑 − 𝑏𝑐, 𝑛) = 1 olmak üzere, 𝑥 ≡ 𝑡(𝑑𝑟 − 𝑏𝑠) (𝑚𝑜𝑑 𝑛) kongrüansına ulaşılır. Benzer 

yöntemlerle 𝑦 ≡ 𝑡(𝑎𝑠 − 𝑐𝑟) (𝑚𝑜𝑑 𝑛) kongrüansına ulaşılır. 

 Örnek: 7𝑥 + 3𝑦 ≡ 10 (𝑚𝑜𝑑 16) ve 2𝑥 + 5𝑦 ≡ 9 (𝑚𝑜𝑑 16) lineer kongrüans 

sisteminin çözüm kümesini bulalım. 

Çözüm: (7 ∙ 5 − 2 ∙ 3, 16) = (29, 16) = 1 olduğundan kongrüans sisteminin bir 

çözümü vardır. İlk kongrüansı 5, ikinci konfrüansı 3 tam sayısıyla çarpıp, çıkarma 

işlemi yapıldığında, 

29𝑥 ≡ 5 ∙ 10 − 3 ∙ 9 ≡ 23 (𝑚𝑜𝑑 16), 13𝑥 ≡ 7 (𝑚𝑜𝑑 16), 65𝑥 ≡ 35 (𝑚𝑜𝑑 16),              

𝑥 ≡ 3 (𝑚𝑜𝑑 16) elde edilir. İlk kongrüansı 2, ikinci konfrüansı 7 tam sayısıyla çarpıp, 

çıkarma işlemi yapıldığında, 

29𝑦 ≡ 7 ∙ 9 − 2 ∙ 10 ≡ 43 (𝑚𝑜𝑑 16), 13𝑦 ≡ 11 (𝑚𝑜𝑑 16), 65𝑦 ≡ 55 (𝑚𝑜𝑑 16),           

𝑦 ≡ 7 (𝑚𝑜𝑑 16) elde edilir. Kongrüans sisteminin çözüm kümesi 𝑥 ≡ 3 (𝑚𝑜𝑑 16) ve 

𝑦 ≡ 7 (𝑚𝑜𝑑 16) olur. 

Öneri: 𝒮, elemanları tam sayı olan bir kare matris ve 𝑚 ∈ ℤ+ olsun. (𝑑𝑒𝑡𝒮, 𝑚) = 1, 𝒮̌ 

matrisi 𝑚 modülüne göre 𝒮 matrisinin tersi ve 𝑑𝑒𝑡𝒮̌ değeri 𝑚 modülüne göre 𝑑𝑒𝑡𝒮 

değerinin tersi olmak üzere 𝒮̌ = 𝑑𝑒𝑡𝒮̌ ∙ 𝑎𝑑𝑗𝒮 eşitliği geçerlidir. 

 Örnek: 𝑥 + 2𝑦 + 3𝑧 ≡ 1 (𝑚𝑜𝑑 7), 𝑥 + 3𝑦 + 5𝑧 ≡ 1 (𝑚𝑜𝑑 7) ve 𝑥 + 4𝑦 + 6𝑧 ≡

1 (𝑚𝑜𝑑 7) lineer kongrüans sisteminin çözüm kümesini bulalım. 

Çözüm:  

𝒮 = [
1 2 3
1 3 5
1 4 6

] , 𝒳 = [
𝑥
𝑦
𝑧

] , 𝒯 = [
1
1
1

] 

olmak üzere 𝒮𝒳 ≡ 𝒯 (𝑚𝑜𝑑 7) yazılabilir. 𝑑𝑒𝑡𝒮 = −1 ve 𝑑𝑒𝑡𝒮̌ = 6 olur. Gerekli 

işlemler yapılarak, 
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𝑎𝑑𝑗𝒮 = [
−2 0 1
−1 3 −2
1 −2 1

] 

bulunur.  

𝒮̌ = 𝑑𝑒𝑡𝒮̌ ∙ 𝑎𝑑𝑗𝒮 = 6 [
−2 0 1
−1 3 −2
1 −2 1

] = [
−12 0 6
−6 18 −12
6 −12 6

]. 

𝒮𝒳 ≡ 𝒯 (𝑚𝑜𝑑 7), 𝒳 ≡ 𝒮̌𝒯 (𝑚𝑜𝑑 7) olacağından, 

𝒳 = [
−12 0 6
−6 18 −12
6 −12 6

] [
1
1
1

] = [
−6
0
0

] ≡ [
1
0
0

] (𝑚𝑜𝑑 7). 

Lineer kongrüans sisteminin çözüm kümesi, 𝑥 ≡ 1 (𝑚𝑜𝑑 7), 𝑦 ≡ 0 (𝑚𝑜𝑑 7) ve 𝑧 ≡

0 (𝑚𝑜𝑑 7) olarak bulunur. 
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UYGULAMALAR 

1) 15 + 25 + 35 + ⋯ + 995 + 1005 değerinin 4 sayısıyla bölümünden 

kalanını bulunuz.  

2) 𝑛 < 𝑝 < 2𝑛 ve 𝑝 asal sayı olmak üzere (
2𝑛
𝑛

) ≡ 0 (𝑚𝑜𝑑 𝑝) olduğunu 

gösteriniz. 

3) 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛1), 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛2) ve [𝑛1, 𝑛2] = 𝑛 olduğunda                   

𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) olduğunu gösteriniz. 

4) 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛), 𝑏 ≡ 𝑐 (𝑚𝑜𝑑 𝑛) ise 𝑎 ≡ 𝑐 (𝑚𝑜𝑑 𝑛) olduğunu 

gösteriniz. 

5) 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) olduğunda herhangi bir pozitif 𝑘 tam sayısı için        

𝑎𝑘 ≡ 𝑏𝑘  (𝑚𝑜𝑑 𝑛) olacağını gösteriniz. 

6) 2 veya 3 sayısıyla bölünemeyen herhangi bir 𝑎 tam sayısı için            

𝑎2 ≡ 1 (𝑚𝑜𝑑 24) olduğunu gösteriniz. 

7) 𝑎 tek tam sayı, 𝑛 ≥ 1 olmak üzere, 𝑎2𝑛
≡ 1 (𝑚𝑜𝑑 2𝑛+2) olduğunu 

gösteriniz. 

8) 53103 + 10353 sayısının 39 sayısıyla bölümünden kalanını bulunuz. 

9) 𝑎𝑘 ≡ 𝑏𝑘  (𝑚𝑜𝑑 𝑛) ve 𝑘 ≡ 𝑗 (𝑚𝑜𝑑 𝑛) olması durumunda                            

𝑎𝑗 ≡ 𝑏𝑗  (𝑚𝑜𝑑 𝑛) olamayacağını gösteriniz. 

10) 93014 sayısının 7 sayısına bölümünden kalanını bulunuz. 

11) 𝑘 pozitif bir tam sayı olmak üzere, (4𝑘 − 11𝑘) sayısının 5 ile 

bölündüğünü gösteriniz. 

12) 𝑎 herhangi bir tek tam sayı ve 𝑛 ≥ 1 olmak üzere 𝑎2𝑛
≡ 1 (𝑚𝑜𝑑 2𝑛+2) 

olacağını gösteriniz. 

13) 𝑝 > 3 asal sayısı için (102𝑝 − 10𝑝 + 1) sayısının 13 ile bölünebildiğini 

gösteriniz. 

14) 𝑥 ≡ 5 (𝑚𝑜𝑑 6), 𝑥 ≡ 4 (𝑚𝑜𝑑 11) ve 𝑥 ≡ 3 (𝑚𝑜𝑑 17) lineer kongrüans 

sisteminin çözüm kümesini bulunuz. 

15) Bir sayının 2, 3, 4, 5, 6 ile bölümünden kalan 1, 7 ile bölümünden kalan 

0’dır. Bu durumu sağlayan en küçük doğal sayıyı bulunuz. 
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16) 17𝑥 ≡ 9 (𝑚𝑜𝑑 276) lineer kongrüans sisteminin çözüm kümesini Çin 

Kalan Teoreminden faydalanarak bulunuz. 

17) 4𝑥 + 51𝑦 ≡ 9 (𝑚𝑜𝑑 35) kongrüans sisteminin çözüm kümesini 

bulunuz. 

18)  3𝑥 + 4𝑦 ≡ 5 (𝑚𝑜𝑑 13), 2𝑥 + 5𝑦 ≡ 7 (𝑚𝑜𝑑 13) kongrüans sisteminin 

çözüm kümesini bulunuz. 

19) (
2 −1
3 4

) matrisinin, 5 modülü kullanılarak, toplama ve çarpma 

işlemlerine göre terslerini bulunuz. 

20) 𝑥 + 𝑦 ≡ 1 (𝑚𝑜𝑑 7), 𝑥 + 𝑧 ≡ 1 (𝑚𝑜𝑑 7) ve 𝑦 + 𝑧 ≡ 1 (𝑚𝑜𝑑 7), 

sisteminin çözüm kümesini matrisleri kullanarak bulunuz. 
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