

Çizgi Kitabevi Yayınları (e-kitap)

©Çizgi Kitabevi
Ekim 2022

ISBN: 978-605-196-878-0
Yayıncı Sertifika No:52493

KÜTÜPHANE BİLGİ KARTI
- Cataloging in Publication Data (CIP) -

ŞAHİN MACİT, Nazife
ŞAHİN, Yusuf

ZAMAN PENCERELİ ARAÇ ROTALAMA PROBLEMİNİN GELİŞTİRİLMİŞ
YAPAY ARI KOLONİSİ VE ATEŞ BÖCEĞİ ALGORİTMALARI İLE ÇÖZÜMÜ

Yayına Hazırlık: Çizgi Kitabevi Yayınları
Tel: 0332 353 62 65- 66

ÇİZGİ KİTABEVİ
Sahibiata Mah.

M. Muzaffer Cad. No:41/1
Meram/Konya

(0332) 353 62 65 - 66

Alemdar Mah.
Çatalçeşme Sk. No:42/2
Cağaloğlu/İstanbul
(0212) 514 82 93

www.cizgikitabevi.com
 / cizgikitabevi

Çalışmanın her aşamasında bilgi ve desteğini esirgemeyen, önerileri ile bana yol gösteren çok değerli

hocam ve danışmanım Doç. Dr. Yusuf ŞAHİN’e en derin teşekkürlerimi sunarım. Yorum ve önerileri ile

çalışmaya katkı sağlayan Sayın Doç. Dr. Muhammet Burak KILIÇ, Doç. Dr. Erdal AYDEMİR, Doç. Dr.

Kenan KARAGÜL, Doç. Dr. Kenan Oğuzhan ORUÇ ve Doç. Dr. Emre ÇOMAK hocalarıma çok teşekkür

eder ve saygılarımı sunarım.

Dr. Öğr. Üyesi Mustafa Bilgehan İMAMOĞLU, Öğr. Gör. Hasan ŞEN, Öğr. Gör. Gökhan ÇAYBAŞI

ve Dr. Öğr. Üyesi Oğuz KÖSE hocalarıma desteklerinden dolayı ayrıca teşekkür ederim. Yorucu ve uzun

süren çalışmalarım boyunca desteğini esirgemeyen ve özellikle hayatım boyunca üzerimde çok emeği

olan, haklarını asla ödeyemeyeceğim babam İbrahim ŞAHİN, annem Ümmü ŞAHİN ve canım kardeşim

Derya ŞAHİN’e maddi ve manevî desteklerinden dolayı sonsuz teşekkürlerimi sunarım.

Son olarak, onlara ayırmam gereken zamandan çalarak çalışmaya yoğunlaştığım son zamanlarda,

göstermiş oldukları hoşgörü ve eşsiz destekleri için biricik oğlum Yiğit MACİT ve canım eşim Hasan

Hüseyin MACİT’e çok teşekkür ederim. İyi ki varsınız iyi ki benim ailemsiniz.

Dr. Nazife ŞAHİN MACİT

𝑭𝒃𝒆𝒔𝒕: En iyi uygunluk değeri

𝒇𝒊: 𝑖. yiyecek kaynağının uygunluk değeri

𝒍𝒊: 𝑖. ateş böceğinin ışık yoğunluğu

ABA: Ateş Böceği Algoritması

ARP: Araç Rotalama Problemi

BTARP: Bölünebilir Talebli Araç Rotalama Problemi

BYA: Bakteriyel Yiyecek Arama

ÇDARP: Çok Depolu Araç Rotalama Problemi

ÇDTDARP: Çok Depolu Topla Dağıt Araç Rotalama Problemi

DARP: Dinamik Araç Rotalama Problemi

EA: Evrimsel Algoritma

EYK: En Yakın Komşu

EZTDARP: Eş Zamanlı Topla Dağıt Araç Rotalama Problemi

GA: Genetik Algoritma

GKA: Guguk Kuşu Arama

HAA: Harmoni Arama Algoritması

HFARP: Heterojen Filolu Araç Rotalama Problemi

KK: Karınca Kolonisi

KKARP: Kapasite Kısıtlı Araç Rotalama Problemi

KSA: Kurbağa Sıçrama Algoritması

LP: Lineer Programlama

MA: Memetik Algoritma

MKARP: Mesafe Kısıtlı Araç Rotalama Problemi

ÖDSTARP: Önce Dağıt Sonra Topla Araç Rotalama Problemi

PARP: Periyodik Araç Rotalama Problemi

PSO: Parçacık Sürü Optimizasyonu

SARP: Statik Araç Rotalama Problemi

TA: Tabu Arama

TB: Tavlama Benzetimi

WOA: Balina Optimizasyon Algoritması

YA: Yarasa Algoritması

YAA: Yerel Arama Algoritması

YAKA: Yapay Arı Kolonisi Algoritması

YK: Yiyecek Kaynağı

YUA: Yusufçuk Algoritması

ZPARP: Zaman Pencereli Araç Rotalama Problemi

𝑵𝑽: Araç Sayısı

𝒎𝒅: mesafe değeri

𝒔𝒅: süre değeri

Küreselleşme bugünün iş ortamında birçok zorlukları beraberinde getirmiştir. Endüstri

Devrimi’nden bu yana, pazar hızlı bir şekilde genişlemiş ve rekabetçi pazarda ayakta kalabilmek için

şirketlerin daha büyük rekabet avantajı kazanması gerekmiştir. Ayrıca, internet dönemi, çevrimiçi

rekabet piyasasına yol açan tüketicilere çevrimiçi alışveriş getirmiştir. Sonuç olarak, rekabet avantajı elde

etmek için şirketler, müşterilerini tutmalarını ve yenilerini çekmelerini sağlayacak daha iyi bir müşteri

memnuniyet oranı almaya yönelmişlerdir (Petelina, 2016: 2). Günümüz iş ortamının giderek daha

rekabetçi hale gelmesi birçok sektördeki birçok şirket için büyük bir baskı yaratmıştır. Böyle bir ortamda,

şirketlerin yeni ürünler tasarlamanın ve üretmenin yollarını sürekli araştırması ve bu ürünleri verimli ve

etkili bir şekilde dağıtması gerekmiştir. Uzun yıllar boyunca şirketler, imalat işlemlerinde ve diğer

işlemlerde ortaya çıkan maliyetleri azaltma çabalarına odaklanmışlardır. Dağıtımı inceleyen ve maliyet

azaltmada onu son sınır olarak kabul eden çok sayıda şirket vardır.

Lojistik bir sistemde, dağıtım maliyeti genellikle en yüksek tek giderdir ve bu genellikle depolama,

stok ve sipariş işleme gibi maliyetlerden daha yüksektir. Dağıtım, hızlı ücret ve navlun enflasyonu,

nakliye maliyetlerinde önemli bir artış ve düzenleme, envanter taşıma maliyetinin yüksek olması ve

petrol piyasası belirsizlikleri nedeniyle yönetimin dikkatini çekmiştir. Tedarik, üretim, dağıtım,

depolama, envanter ve bilgi sistemleri önemli lojistik fonksiyonlardır. Bunlar arasında dağıtım tüm

lojistik sistemde önemli bir fonksiyondur ve tedarik zincirindeki üreticiler ve müşteriler arasındaki

anahtar bağlantıdır. Ayrıca, dağıtım bir şirkette kârlılığın en büyük itici gücüdür, çünkü hem lojistik

maliyeti hem de müşteri deneyimi üzerinde doğrudan bir etkiye sahiptir. Dolayısıyla, şirketler genel

lojistik ve tedarik zinciri maliyetlerini azaltma hedefine ulaşmak, dağıtım maliyetlerini düşürmek için

çeşitli yaklaşımlar benimsemiştir. Ürün özellikleri, kalite ve fiyat müşteriler için önemli faktörler

olmasına rağmen, lojistik ve tedarik zinciri performansı bir şirketin başarısının anahtarıdır.

Bir dağıtım ağının iyi bir tasarımı ile düşük işletme maliyetinden yüksek müşteri hizmeti seviyesine

kadar değişen bir dizi lojistik ve tedarik zinciri hedefine ulaşılmaktadır. Günümüz rekabetçi iş

dünyasında, maliyet, kalite, verimlilik ve müşteri hizmetleri seviyesinin boyutları artık bir şirket için

değişmez. Aynı anda dikkate alınmaları gerekir. Bu hedeflere ulaşmak için, tüm dağıtım ağını en uygun

şekilde yeniden tasarlamak kritik öneme sahiptir ve çoğu zaman gereklidir (Yang, 2013: 1). Lojistik

sisteminin temel işlevi olan dağıtım, doğrudan son müşteriler ile bağlantılıdır. Dağıtım fonksiyonunun

performansı ve hizmet seviyesi, şirketlerin lojistik maliyetini ve müşterinin tüm lojistik hizmet için

memnuniyet seviyesini doğrudan etkilemektedir. Dağıtımın ana parçası, dağıtım araçlarının

sınıflandırılması ve dağıtımı gerçekleştirmesi ve malların takviye edilmesi sürecidir. Bunlar arasında,

araçlara yönelik dağıtım rotalarının makul bir şekilde optimizasyonu, tüm lojistik taşımacılığın hızı,

maliyeti ve verimliliği açısından son derece önem arz etmektedir. Ulaşım maliyetinin, lojistik merkezin

maliyetinin çoğunu içerdiğinden ve şehir içi ulaşımın son yıllarda kalabalıklaşmasından dolayı, dağıtım

araçlarının güzergâhını optimize etmenin önemi desteklenmektedir. Lojistik dağıtım merkezleri, nakliye

maliyetini etkin bir şekilde azaltmayı amaçladığından dağıtım araçlarının rotası ve program planlaması

çok önemli operasyon kararlarıdır ve bu tür kararlar araç rotalama problemi olarak adlandırılmaktadır

(Ding ve Zou, 2016: 956).

Mal ve hizmetlerin verimli bir şekilde dağıtılması günlük faaliyetlerin merkezinde yer almaktadır.

Bu dağıtım sorunları genellikle araçların rotalanmasını içerir ve bir okul otobüsü, bir yerleşim

mahallesinin sokaklarında dolaşan çöp kamyonu, ayda bir kez müşterisinin sayaçlarını okuyan bir

elektrik şirketi ya da bir mahalledeki tüm evleri ziyaret eden postacı gibi faaliyetler dağıtım problemi

olarak ele alınabilir. Bu faaliyetlere katılan araçların toplam maliyeti çok büyük olabilir ve bu araçları

mümkün olduğunca verimli bir şekilde yönlendirmek önemlidir. Ancak, bu tür sorunlara etkin çözümler

geliştirmek, son derece zor olduğu kanıtlanan bir birleşimsel optimizasyon sorununu çözmemizi

gerektirir. Bu tür sorunlar, ilk kez Dantzig ve Ramser tarafından 1959’da tanıtılmış ve son elli yılda

yüzlerce çalışma yayınlanmıştır.

Klasik ARP’de, homojen bir araç filosu ve her müşterinin bilinen bir talebi olduğu bir dizi müşteri

yeri verilmiştir. Görev, tüm müşterilerin talebini karşılayacak minimum maliyette bir rota seti

oluşturmak ve ayrıca bireysel rotaların araç kapasitesine ve rota uzunluğu kısıtlamalarına uymasını

sağlamaktır. ARP’nin ifade edilmesi basit ve anlaşılması kolay olmasına rağmen pratikte çözülmesi çok

zor olan bir problemdir (Groer, 2008:1). Problemde, bir dizi kısıtlama göz önüne alındığında, bir dizi

müşteriye hizmet vermek üzere bir araç filosuna en uygun rotanın tasarlanması amaçlanmıştır. ARP’ler

çok sayıda çeşidi olan problem türüdür. Bunlar, gereken hizmetin kalitesine, taşınan malların,

müşterilerin ve araçların özelliklerine göre formüle edilir (Kumar ve Panneerselvam, 2012: 66).

ARP’nin bir uzantısı olan ZPARP, NP-zor kombinatoryal optimizasyon problemi sınıfına ait

olduğundan bu problemlerin makul bir süre içerisinde kesin çözümü çok zordur. Bu nedenle bu tarz

problemlerin çözümünde genellikle sezgisel yöntemler tercih edilmektedir. Uygun bir çözüme

ulaşmanın yeterli olmadığı, ancak çözüm kalitesinin kritik olduğu durumlarda, pratik olarak kabul

edilen süre içinde mümkün olan en iyi çözümleri elde etmek için etkili prosedürlerin araştırılması önem

kazanmaktadır. Genellikle gerçek hayat verilerinin karmaşıklığı ile birlikte müşteri sayısı, sorunun tam

olarak çözülmesine izin vermez. Bu durumlarda sezgisel ve metasezgisel yöntemler kullanılabilir. Bu

yöntemler en iyi çözümü garanti etmezler. Yaklaşım algoritmaları için en kötü durum sapması

bilinmesine rağmen sezgiseller için bilinen bir şey yoktur. Ancak tipik olarak çok iyi performans

gösterecek şekilde ayarlanabilirler. Günümüzde ZPARP’nin çözümünde benzetimli tavlama, tabu

arama, genetik algoritma gibi meta-sezgisel yöntemler başarılı bir şekilde kullanılmaktadır (El-Sherbeny,

2010: 123-124).

ZPARP’de büyük veri setlerinin kesin yöntemlerle çözülmesinin çok uzun zaman alması çoğu

araştırmacıları sezgisel ve meta-sezgisel yöntemlere yöneltmiştir. Probleme daha kısa sürede ve en

uygun çözümün bulunmasında daha etkili olan bu metotlar literatürde oldukça önemli bir yere sahip

olmuştur ve olmaya da devam etmektedir. Bu çalışma kapsamında, problemin kısıtlamalarından olan

araç kapasitelerini, seyahat süresi kısıtlamalarını ve müşteriler tarafından belirlenen zaman penceresini

kısıtlamalarını ihlal etmeden tüm müşterilere minimum maliyetle (seyahat mesafesi vb.) hizmet etmeleri

için araçlara uygun rotaları bulmak amacıyla yapay arı kolonisi algoritması ve ateş böceği algoritması

önerilmiştir.

Çalışmanın birinci bölümünde lojistik ve lojistik yönetimi konuları ele alınmaktadır. Lojistiğin

tanımı, tarihsel gelişimi, lojistik yönetiminin tanımı ve önemi gibi konulara bu bölüm kapsamında kısaca

değinilmiştir. İkinci bölümde ARP ile ilgili kavramlar incelenmiştir. ARP’nin tanımı, tarihsel gelişimi ve

çeşitleri, KKARP’nin tanımı ve matematiksel modeli, ZPARP’nin tanımı ve matematiksel modeli,

ZPARP’nin çözümünde kullanılan yöntemler ile ilgili literatür araştırması bu kısımda ele alınmıştır.

Çalışmanın üçüncü bölümünde çalışma kapsamında kullanılan meta-sezgisel yöntemler olan yapay arı

kolonisi, ateş böceği algoritmaları açıklanmış ve belirtilen probleme bu yöntemlerin uyarlanması

anlatılmıştır. Dördüncü bölümde yapılan deneysel çalışmalar ile geliştirilen yöntemlerin

karşılaştırmaları sunulmuştur. Son bölümde ise yapılan çalışma özetlenmiş ve çalışma ile ilgili sonuç ve

önerilere yer verilmiştir.

Bugünün global pazarlarında artan rekabet, ömrü kısa ürünlerin pazara sunulması ve müşteri

beklentilerinin yüksek olması, üretim işletmelerini yatırım yapmaya ve lojistik sistemlerindeki

stratejilerini geliştirmeye yöneltmiştir. Mobil iletişim ve bir gecede teslimat gibi iletişim ve ulaşım

teknolojilerindeki değişiklikler, lojistik sistemlerin yönetiminin gelişimine katkı sağlamıştır. Bu

sistemlerde, ürünlerin fabrikalarda üretimi gerçekleştikten sonra muhafaza edilmesi için depolara, daha

sonra aracı kuruluşlara veya nihai müşterilere sevki gerçekleştirilir. Bu sevk süresince maliyeti minimum

ve hizmet kalitesini yüksek düzeyde tutmak için lojistik stratejileri lojistik ağındaki çeşitli seviyelerin

etkileşimlerini gözönünde bulundurmalıdır. Dağıtım ağı; ürün ya da hizmetlerin tedarikçilerden

müşterilere doğru akışını kapsayan ve bu süreç içerisindeki üretim merkezleri, depolar, dağıtım

merkezleri ve perakendeci satış noktalarının yanı sıra, hammadde, süreç içi envanter ve tesisler

bütününden oluşmaktadır (Bramel ve Simchi-Levi, 1997: 1).

Kuruluşlara değer yaratmanın ve müşterilere teslim etmenin yeni yollarını bulmaya yönelik

baskıların giderek daha da güçlenir hale gelmesi, geleneksel olarak kullanılanlardan daha verimli lojistik

sistemleri geliştirme ihtiyacını doğurmuştur. Ayrıca etkin bir lojistik yönetimi sayesinde firmaların

maliyet azaltma ve hizmet iyileştirme gibi hedeflerini önemli ölçüde gerçekleştireceğine dair artan bir

görüşün olması lojistik yönetimine olan ilgiyi de arttırmıştır (Rego ve Alidaee, 2005: 3). Giderek daha da

artan öneme sahip olan lojistik ve lojistik yönetimi ile ilgili kavramlara çalışmanın bu bölümünde yer

verilmiştir.

 Lojistik kavramı, iş ortamındaki değişiklikler gibi faktörlere cevap olarak zaman içinde gelişmiştir.

Grunnet (BTRE 2001), 1950'lerde envanterin, 1960'lı yıllarda dağıtımın, 1970’lerde üretimin, 1980’lerde

satın alma / üretim / satışın ve 1990’lardaki iş sürecinin belirtilen yılların dikkat çeken terimleri olduğunu

ileri sürmüştür. Lambert ve arkadaşları 1998 yılında “herhangi bir organizasyondaki lojistiğin temel

amacının kurumun müşteriye olan hizmet hedeflerini etkin ve verimli bir şekilde desteklemektir.”

olduğunu belirtmiştir.

Lambert ve Stock (1993) lojistik yönetimini, “Müşteri gereksinimlerini dikkate alarak,

hammaddelerin, mamul malların, süreç içi envanterin ve amaca yönelik bilgilerin üretim noktasından

tüketim noktasına uygun maliyetli akışını ve depolanmasını planlama, uygulama ve kontrol etme

sürecidir.” şeklinde tanımlamıştır. Lojistik yönetiminin ana vurgusu verimliliktir. Broeke vd. (1989),

hammaddelerin alımından bitmiş ürünlerin müşteriye teslimine kadar satın alma, taşıma ve depolama

faaliyetlerinin organizasyonu, planlaması, uygulaması ve kontrolünün lojistik olduğunu belirtmiştir

(Tseng, 2004: 14-15).

Lojistik, genel olarak malların bir yerden diğerine hareketi olarak bilinmektedir. Daskin (1985),

lojistiği “malların zaman ve mekânın üstesinden gelmesine izin vermek için gerekli olan fiziksel, yönetsel

ve bilgi sistemlerinin tasarımı ve çalışması” olarak tanımlamıştır. Lojistik Yönetimi Konseyi tarafından

ilan edilen bir diğer tanım ise:

“Müşterilerin ihtiyaçları doğrultusunda hammaddelerin, mamul malların, süreç içi envanterin ve

ilgili bilgilerin çıkış noktasından tüketim noktasına kadar etkin, uygun maliyetli taşınmasını ve

depolanmasını planlama, uygulama ve kontrol etme sürecine lojistik denir.” şeklindedir (Chiu, 1995: 5;

Elzarka, 2010: 50).

Lojistiğin anlamı, önemi ve içeriği ve hatta onu neyin oluşturması gerektiği hakkında çok şey

yazılmış, ancak bu konudaki tartışmalar henüz tamamlanmamıştır. Çalışmaya değer bir disiplin olarak,

lojistik nispeten geç gelişmiştir ve bu nedenle de nispeten genç bir bilimsel disiplindir. Bu yüzden bugün

hala lojistik tanımı konusunda bazı şüpheler söz konusudur. Elbette, aynı kelimelerin aynı sırada

kullanılması gerektiği anlamında tek bir tanım beklenilmesi söz konusu değildir. Tekdüze tanım,

öncelikle lojistik unsurları ile alt bölümleri arasındaki ilişkiyi açıklığa kavuşturmak yerine, bir disiplin

olarak lojistik çerçevesini verecektir. Günümüzde endüstri ve ticaret başta olmak üzere birçok sektörde

lojistik sektörünün önemi artmaktadır. Lojistik, tüm malzemenin entegre yönetimini ve tedarik

malzemelerinin nihai tüketiciye kadar olan geçişi sırasında tedarikçilerin ilgili bilgi akışını ele alan bir

bilim olarak kabul edilir. Birleştirilmiş lojistik tanımı olmasa da yazarların çoğu bu tanımın olabileceği

konusunda hemfikirdir. Farklı ülkelerden ve kıtalardan gelen konular üretim ve iş dünyasıyla

bütünleştiğinde, özellikle çağdaş küresel ortamda, malzeme ve bilgi akışının önemi ve hacmi artar.

Malzeme ve bilgi akışını başarılı bir şekilde yönetmek için, hacmi ve yapısı ile ilgili iyi bir genel bakışa

sahip olmak gerekir (Kukovic vd., 2014: 111-112).

 Son tanımların ortak noktası olarak lojistik, müşterileri memnun etmek ve rekabet kazandırmak

için, üretim, satış süreci ve atık bertarafının başından sonuna kadar malzeme ve malların taşınması ve

işlenmesi sürecidir. Tilanus’a göre lojistik, müşteri ihtiyaçlarını ve isteklerini önceden belirlemek; bu

ihtiyaçları ve istekleri yerine getirmek için gerekli olan sermayeye, materyallere, insanlara, teknolojilere

ve bilgilere sahip olma; müşteri taleplerini yerine getirmek için mal veya hizmet üreten ağı optimize etme

ve müşteri taleplerinin zamanında karşılamak için ağdan yararlanma sürecidir. Basitçe söylemek

gerekirse lojistik, müşteri odaklı operasyon yönetimidir (Tseng vd., 2005: 1658).

Sermaye çalışması “Lojistik Sistemleri”, tüm insan faaliyetlerini sentezlemiş ve her birinin ayrı bir

lojistik alt sistem olduğunu göstermiştir. Ayrıca, "lojistik" kelimesinin kaynağı, onun doğuşunun, on

sekizinci yüzyıldaki buhar motorunun icadı ile zamansal olarak ilişkili olduğu görüşüne dayanmaktadır.

Bu nedenle, lojistik kavramının doğuşu, sanayi devrimi ile doğrudan ilişkilidir, ancak üretim ve ticaret

olgusu daha eski zamanlara dayanır. Şu anda yaygın olan görüş, lojistik kavramının ilk kez İsviçre

General Baron de Jomini (1779 −1869) tarafından kullanıldığıdır. Lojistik kelimesinin her ikisi de Fransız

kökenli olmak üzere iki tip versiyonu vardır. İlk "logistique", "Marechal de Logis" askeri rütbesinden

türetilmiştir ve askeri destek birliklerinin örgütlenmesi anlamına gelir. Diğeri mekânsal bir askeri

organizasyon anlamına gelen “loger” dir. Ondokuzuncu yüzyılın sonunda, lojistik terimi Amerika

Birleşik Devletleri'ne gelmiş ve askeri literatür, askeri destek hizmetleri bilimi, yani birliklere ulaşım ve

tedarik anlamında “lojistik” terimini benimsemiştir. İkinci Dünya Savaşı'nda, “lojistik” terimi, müttefik

birliklerin donatımında ve tedarik edilmesinde, planlama ve yönetim süreciyle ilişkili olarak

kullanılmıştır (Tepic vd., 2011: 379).

Dağıtım ve lojistik unsurları, elbette, mal ve ürünlerin imalatı, depolanması ve taşınması için her

zaman temel olmuştur. Bununla birlikte, dağıtım ve lojistiğin iş ve ekonomik çevrede hayati işlevler

olarak kabul edilmesi ancak nispeten yakın zamanda olmuştur. Lojistiğin rolü değişti, çünkü artık birçok

farklı operasyon ve organizasyonun başarısında önemli bir rol oynuyor. Özünde, lojistik için temel

kavramlar ve mantık yeni değildir. Dağıtım ve lojistiğin gelişiminde birkaç farklı aşama olmuştur.

1950’lerden önce lojistik keşfedilmemişti. 1950’li yıllar ve 1960’lı yılların başında dağıtım sistemleri

plansız ve formüle edilmemiş durumdaydı. Üreticiler üretmiş, perakendeciler perakende satışı yapmış

ve bir şekilde üretilen ürünler mağazalara ulaşmıştır. Dağıtım, genel olarak taşımacılık endüstrisi ve

üreticilerin kendi hesap filoları tarafından temsil edilmiştir. Çok az pozitif kontrol vardı ve dağıtımla

ilgili çeşitli fonksiyonlar arasında gerçek bir bağlantı yoktu (Tseng vd., 2005: 1660; Rushton vd., 2010: 5-

6).

 1960’lı yıllar ve 1970’li yılların başında 'karanlık kıta'nın gerçekten de yönetimsel katılım için geçerli

bir alan olduğunun kademeli olarak anlaşılmasıyla fiziksel dağıtım kavramı geliştirilmiştir. Bu, nakliye,

depolama, malzeme taşıma ve paketleme gibi birbirine bağlanabilecek ve daha etkin bir şekilde

yönetilebilecek bir dizi birbiriyle ilişkili fiziksel aktivitenin olduğunun kabul edilmesiyle

gerçekleştirilmiştir. Özellikle, bir sistem yaklaşımı ve toplam maliyet perspektifinin kullanılmasını

sağlayan çeşitli fonksiyonlar arasında bir ilişkinin olduğu kabul edilmiştir. Bir fiziksel dağıtım

yöneticisinin gözetimi altında, hem gelişmiş hizmeti hem de düşük maliyeti sağlamak için bir dizi

dağıtım zorluğu planlanabilir ve yönetilebilir olmuştur. Başlangıç faydalar, ürünlerinin tedarik zinciri

boyunca akışını yansıtmak için dağıtım operasyonlarını geliştiren üreticiler tarafından fark edilmiştir

(Rushton vd., 2010: 6).

1970’li yıllar, dağıtım kavramının geliştirilmesinde önemli bir on yıl olmuştur. Büyük

değişikliklerden birisi de, bazı şirketlerin, bir organizasyonun fonksiyonel yönetim yapısına dağıtımı

dâhil etme ihtiyacını tespit etmesi olmuştur. On yılda dağıtım zincirinin yapısı ve kontrolünde değişiklik

görülmüştür. Üreticilerin ve tedarikçilerin gücünde bir düşüş yaşanmış ve büyük perakendecilerde

inanılmaz derecede artış meydana gelmiştir. Daha büyük perakende zincirleri, başlangıçta mağazalarını

tedarik etmek için bölgesel veya yerel dağıtım depolarına dayanan kendi dağıtım yapılarını

geliştirmiştir. 1970’lerden itibaren, giderek daha fazla lojistik uygulaması ve araştırması ortaya çıkmıştır.

1973 yılında petrol fiyatlarındaki artış nedeniyle lojistik faaliyetlerin işletmeler üzerindeki etkileri

artmıştır. Pazarın yavaş büyümesi, ulaşım kontrolünün serbest bırakılması ve üçüncü dünyanın ürün ve

malzemeler üzerindeki rekabetleri, o zamanlar lojistik sistemin planlama ve iş üzerindeki önemini

artırmıştır (Rushton vd., 2010: 6; Tseng vd., 2005: 1660).

1980’li yıllarda oldukça hızlı maliyet artışları ve gerçek dağıtım maliyetlerinin daha net

tanımlanması, dağıtımdaki profesyonellikte önemli bir artışa katkıda bulunmuştur. Bu profesyonellik ile

uzun vadeli planlamaya doğru bir adım atılmış ve maliyet tasarruf yöntemlerini belirleme ve takip etme

girişimleri olmuştur. Bu önlemler arasında merkezi dağıtım, stok tutmada ciddi düşüşler ve gelişmiş

bilgi ve kontrol sağlamak için bilgisayarın kullanımı yer almıştır. Üçüncü taraf dağıtım hizmeti

endüstrisinin büyümesi de büyük önem taşımış; bu şirketler bilgi ve donanım teknolojisindeki

gelişmelere öncülük etmişlerdir. Şirketler, organizasyonlarının içindeki ve dışındaki fiziksel akışı

yönetmek ve koordine etmek için birbirleriyle anlaşmaya başladılar. Entegre lojistik sistemleri kavramı

ve ihtiyacı, dağıtım faaliyetlerine katılan ileriye dönük şirketler tarafından tanınmıştır (Rushton vd.,

2010: 6-7; Ezzat vd., 2019:2) .

1980’lerin sonlarında ve 1990’ların başını kapsayan dönemde, bilgi teknolojisindeki ilerlemelere

bağlı olarak, örgütler bütünleştirilebilecek işlevler açısından bakış açılarını genişletmeye başlamıştır.

Kısacası bu, malzeme yönetiminin (gelen taraf) fiziksel dağıtımla (giden taraf) birleştirilmesini

kapsamıştır. Bu kavramı tanımlamak için "lojistik" terimi kullanılmıştır. Bu bir kez daha, müşteri

hizmetlerini iyileştirmek ve ilgili maliyetleri azaltmak için ek fırsatlara yol açmıştır. Bu dönemde yapılan

en önemli vurgu, etkili bir lojistik stratejisinin sağlanmasında bilgi yönlerinin fiziksel yönler kadar

önemli olduğu olmuştur.

1990’larda, süreç sadece bir örgütün kendi sınırları içindeki temel işlevleri değil, aynı zamanda bir

ürünün nihai bir müşteriye sağlanmasına katkıda bulunan dışındaki işlevleri de kapsayacak şekilde

geliştirilmiştir. Bu tedarik zinciri yönetimi olarak bilinmektedir. Tedarik zinciri kavramı, pazara ürün

elde etmekle uğraşan birkaç farklı kuruluş olabileceğine güven vermiştir. Bu nedenle, örneğin, üreticiler

ve perakendeciler, doğru ürünlerin verimli ve etkili bir şekilde nihai müşteriye akmasını sağlayan bir

lojistik boru hattı oluşturulmasına yardımcı olmak için ortaklıkla birlikte hareket etmiştir.

2000 ve sonraki yıllarda, iş örgütleri rakiplerine karşı pozisyonlarını korumak veya geliştirmek için

çaba sarf ettikleri, yeni ürünleri piyasaya sürdüğü ve faaliyetlerinin kârlılığını arttıracağı için birçok

zorlukla karşı karşıya kalmıştır. Bu, özellikle iş hedeflerinin yeniden tanımlanmasında ve tüm sistemlerin

yeniden mühendisliğinde tanınan iyileştirme için pek çok yeni fikir geliştirilmesine yol açmıştır. Lojistik

ve tedarik zinciri nihayet genel iş başarısının anahtarı olan bir alan olarak kabul edilmiştir. Gerçekten,

birçok kuruluş için lojistikteki değişiklikler, işlerinde büyük iyileştirmeler için katalizör sağlamıştır.

Lider kuruluşlar, lojistikteki çeşitli işlevlerin yalnızca başka herhangi bir etkiden bağımsız olarak en aza

indirilmesi gereken bir maliyet yükü olduğu geleneksel görüşten ziyade, lojistiğin sunabileceği olumlu

bir “katma değer” rolünün olduğunu fark etmiştir. Bu nedenle, lojistiğin rolü ve önemi, iş geliştirme için

önemli bir yardımcı olarak kabul edilmeye devam etmiştir (Rushton vd., 2010: 6-8). Lojistiğin tarihsel

gelişimi, özet olarak Tablo 1’de ifade edilmiştir.









































































Ticari personelin kâr amacı gütmeyen bir kuruluşu olan Lojistik Yönetimi Konseyine göre, lojistik

yönetimi; müşteri gereksinimlerini göz önünde bulundurarak malların, hizmetlerin ve ilgili bilgilerin

menşe noktasından tüketime kadar verimli, etkin bir şekilde akışını ve depolanmasını planlama,

uygulama ve kontrol etme sürecidir (Bramel ve Simchi-Levi, 1997: 1).

Tedarik Yönetimi Uzmanları Konseyi’nin (2011) tanımına göre, lojistik yönetimi “Müşterilerin

gereksinimlerini karşılamak için üretim ve tüketim noktası arasındaki ilgili bilgilerin, araç-gereç ve

malların, akışını ve depolanmasını tersine çeviren, etkin bir şekilde ilerlemeyi planlayan, uygulayan ve

kontrol eden Tedarik Zinciri Yönetiminin önemli bir kısmıdır” şeklinde tanımlanmaktadır. Ayrıca,

lojistik yönetimi, bütün lojistik faaliyetlerini kontrol eden, en iyi şekilde kullanan ve bu lojistik faaliyetleri

pazarlama, satış üretimi, finans ve bilgi teknolojisi gibi diğer fonksiyonlarla bütünleştiren bir

fonksiyondur.

Şekil 1’de lojistik yönetiminin süreci ayrıntılı bir şekilde gösterilmiştir. Tüm süreç, tedarikçi veya

üretici ile başlar ve daha sonra tedarik, işlem, dağıtım ve müşteri tarafından bitirme gibi şirketin tüm

lojistik operasyonlarında devam eder. Ayrıca, müşteriden gelen malzeme akışının yönünü ve bilgi

akışını net bir şekilde anlamak çok önemlidir. Şekil 1’e dayanarak, lojistik yönetiminin temel

kavramlarını tanımlamak kolaydır.

Lojistik yönetiminin her iki tanımını da inceledikten ve Şekil 1’i analiz ettikten sonra, lojistik

yönetiminin hammadde yönetiminden nihai ürünün teslimatına kadar organizasyonu kapsadığını

söylemek mümkündür (Petelina, 2016: 16-17). Bu toplam sistem bakış açısına göre, pazardan, firma ve

operasyonları ve bunun ötesinde tedarikçilere tedarik eden malzeme ve bilgi akışlarının koordinasyonu

yoluyla müşterilerin ihtiyaçlarının karşılanması anlamına gelir. Bu şirket çapında entegrasyonun

başarılması, geleneksel organizasyonda tipik olarak karşılaşılandan oldukça farklı bir oryantasyon

gerektirir. Örneğin, uzun yıllardır pazarlama ve imalat, organizasyon içinde büyük ölçüde ayrı

faaliyetler olarak görülmüştür. İmalat öncelikleri ve hedefleri tipik olarak, uzun üretim süreleri,

minimize edilmiş kurulumlar ve değişimler ve ürün standardizasyonu yoluyla elde edilen işletme

verimliliğine odaklanmıştır. Diğer taraftan, pazarlama çeşitliliği, yüksek servis seviyeleri ve sık ürün

değişimleri ile rekabet avantajı elde etmeye çalışmıştır.

Son yıllarda hem pazarlama hem de üretimin yenilenen dikkatin odağı haline gelmesi tesadüf

değildir. Pazarlama ve müşteri odaklılık felsefesi olarak pazarlama artık her zamankinden daha geniş

bir kabul görmektedir. Artık genel olarak müşteri gereksinimlerini anlama ve karşılama ihtiyacının

hayatta kalmak için bir ön şart olduğu kabul edilmektedir. Aynı zamanda, artan maliyet rekabetçiliği

arayışında, üretim yönetimi büyük bir devrimin konusu olmuştur. Son on yılda, esnek üretim

sistemlerine, malzeme ihtiyaç planlamasına ve tam zamanında üretime dayalı envantere ait yeni

yaklaşımlar hızlı bir şekilde tanıtılmıştır. Aynı şekilde, entegre lojistik sürecinin bir parçası olarak, satın

almanın rekabet avantajı yaratmada ve sürdürmede kritik rol oynar. Önde gelen kuruluşlar artık stratejik

planlarının geliştirilmesine düzenli olarak arz yönlü sorunları dahil etmektedirler. Çoğu kuruluşta

yalnızca satın alınan malzemelerin ve tedariklerin maliyeti toplam maliyetlerin önemli bir bölümünü

oluşturmakla kalmaz, aynı zamanda alıcıların ve tedarikçilerin lojistik süreçlerinin daha yakın

entegrasyonu yoluyla tedarikçilerin yetenek ve yeterliliklerinden yararlanmak için büyük bir fırsattır. Bu

nedenle, bu açıdan lojistik, temel olarak firmanın sistem çapında bir bakış açısını geliştirmeyi amaçlayan

bütünleştirici bir kavramdır (Christopher, 2005: 15-16).

Lojistik yönetimi, günümüzde ekonomik zorluklarla yüzleşmek için kullanılan araçlardan biridir;

kuruluşun iş ve temel faaliyetlerinin bir karışımıdır. Bütünleşik bir şekilde ele alınan tedarik ve dağıtım

faaliyetleri, lojistik faaliyetlerini oluştururlar. Bir iş organizasyonu içindeki lojistik faaliyetler,

müşterilerin ihtiyaçlarını ve satın alma gücünü göz önünde bulundurarak, zaman ve yer ile ilgili pazar

zorluklarını ve ayrıca sağlanan hizmetin maliyeti ve kalitesi aracılığıyla müşterileri memnun etmeye

çalışır. Müşteri memnuniyeti önemlidir çünkü pazarlamacılara ve işletme sahiplerine işlerini yönetmek

ve geliştirmek için kullanabilecekleri bir ölçü sağlar. Müşteri memnuniyeti aynı zamanda müşterilerin

sadakatini ölçerek işletmenin veya bir ürün yaşamının sürekliliğini belirlemenin bir yoludur.

Müşterilerin mutlu ve memnun olması satışların devamlılığını yani işin devamlılığını sağlayacaktır.

Tüm araştırmacılar ve iş danışmanları, lojistik yönetiminin, bir müşterinin ihtiyacının

karşılanmasında doğrudan veya dolaylı olarak yer alan tüm taraflardan (üreticiler, pazarlamacılar,

tedarikçiler, nakliyeciler, depolar, perakendeciler ve hatta müşteriler dâhil) oluştuğu konusunda

hemfikirdir. Lojistiğin ana hedefleri, müşteriye olan ürün veya hizmet sunumunu iyileştirerek genel

organizasyon performansını ve müşteri memnuniyetini iyileştirmektir. Lojistik analiz, kalite ve süreyi

dikkate alarak tedarikçilerden son kullanıcıya kadar olan maliyeti düşürmeyi amaçlar. Başlıca müşteri

memnuniyeti göstergelerinden ikisi maliyetler ve bekleme süresidir. Her iki müşteri memnuniyeti

göstergesi de ucuz bir ürün (ucuz hammadde kullanımı, en ucuz nakliye yöntemini seçme, düşük işçilik

maliyeti ile yüksek üretim, düşük maliyetli depolama ve teslimat) ile sonuçlanan lojistik süreçte ima

edilmektedir (Ghoumrassi ve Tigu, 2017: 292-296). Asıl hedefi müşteriyi memnun etmek olan lojistik

sisteminin her bir bileşeni, müşterinin doğru ürünü, doğru yerde, minimum maliyetle doğru zamanda

alıp almadığını etkileyebilir. Günümüzde birçok şirket lojistik yönetimini müşteriyi memnun etmek ve

nihayetinde müşteri hizmetlerini iyileştirmek amacıyla uygulamaktadır. Gereken hizmetin minimum

maliyetle sağlanması ise etkili bir lojistik yönetimi sayesinde gerçekleşmektedir (Kaveh ve Samani, 2009:

16-17).

Lojistik sistemlere ait dağıtım ağı biçimi, üretim, envanter kontrolü, çapraz yerleştirme, envanter ve

dağıtım entegrasyonu, araç filosu yönetimi, araç rotalama, paketleme, dağıtımın belirli zaman

aralıklarında gerçekleştirilmesi, toplama ve dağıtım sistemleri gibi karmaşık bir yapıya sahip olan lojistik

problemleri bir şirketin performansı üzerinde önemli bir etkiye sahiptir. Dolayısıyla şirket yönetiminin

bu tarz karmaşık lojistik problemlere optimum çözümler bulabilmesi için lojistik yönetimine gereken

önemi vermesi, planını etkin bir şekilde önceden yapması ve yönetmesi gerekir. Lojistik yönetimini

devam ettirmesiyle müşterilerin ihtiyacını karşılayacak ve müşterilerden olumlu geri dönüşler alacağı

için gelirini arttıracaktır. Diğer taraftan en uygun ulaşım ve taktiksel planlama yöntemlerini seçerek

işletme maliyetlerini ve toplam ulaşım maliyetlerini de azaltacaktır (Petelina, 2016: 18; Bramel ve Simchi-

Levi, 1997: 3-6; Friedrich ve Gumpp, 2014: 47).

17

İ

Lojistik, hammadde alımından nihai ürünün teslimine kadar, toplam ürün akışının etkin yönetimi

ile ilgilidir (Golden, 1975: 1). Malların ve hizmetlerin verimli dağıtımı, birçok günlük aktivitenin

merkezinde yer almaktadır. Bir okul otobüsü tarafından toplanan bir çocuk, bir yerleşim mahallesinin

sokaklarında dolaşan çöp kamyonu, ayda bir defa müşterilerinin sayaçlarını okuyan bir elektrik şirketi

gibi dağıtım sorunları araçların rotalanması ile ilgili sorunlardır. Bu faaliyetlere katılan araçların toplam

maliyeti çok büyük olabilir ve bu araçları mümkün olduğunca verimli bir şekilde yönlendirmek

önemlidir. Bununla birlikte, bu tür sorunlara etkin çözümler geliştirmek, son derece zor olduğu

kanıtlanan bir kombinatoryal optimizasyon problemini çözmemizi gerektirir (Groer, 2008: 1-2).

Tam bir lojistik sistem, hammaddelerin bir dizi tedarikçiden veya satıcıdan nakledilmesini, üretim

veya işleme için fabrika tesisine teslim edilmesini, ürünlerin çeşitli ambarlara veya depolara taşınmasını

ve sonunda müşterilere dağıtılmasını içerir. Hem tedarik hem de dağıtım prosedürleri etkin taşımacılık

yönetimi gerektirir. İyi bir taşımacılık yönetimi, bir şirkette toplam dağıtım maliyetini önemli miktarda

azaltabilir. Potansiyel maliyet tasarrufları; daha uygun rotalar sayesinde daha düşük kamyon maliyeti

ve daha kısa mesafeler, azaltılmış kurum içi alan ve ilgili maliyetler, geç teslimat nedeniyle daha az ceza

gibi faktörleri oluşturur. En önemli taşımacılık yönetimi önlemlerinden birisi de araçların etkili bir

şekilde rotalanmasıdır. Çeşitli kısıtlamalar verilen araçlar için rotaların optimize edilmesi, araç rotalama

problemlerinin kaynağıdır. Birçok gerçek nakliye lojistiği ve dağıtım problemi araç rotalama problemi

olarak ifade edilebilir. Bu tarz problemlerdeki amaç, bilinen talepleri olan bir dizi müşteriye hizmet

etmek için minimum maliyetle bir rota planlamaktır. Her müşteri yalnızca bir rotaya tahsis edilir ve

herhangi bir rotanın toplam talebi araç kapasitesini aşmamalıdır. Tipik bir araç rotalama problemi Şekil

2’de ifade edilmiştir. Çözüm iki rotadan oluşmaktadır. Tek depo ve 12 müşteriden oluşan problemde her

rota depoda başlar ve müşterileri ziyaret ettikten sonra depoya geri döner (Tan vd., 2001: 281- Alzaqebah

vd., 2016: 1).

Rota 1: Depo → 7→8→9→11→12→Depo

Rota 2: Depo→2→3→1→4→5→6→10→Depo

Bazen depo 0 (sıfır) olarak belirtilir.

Bir dizi yan kısıtlamaya tabi olan ve bir dizi coğrafi olarak dağılmış müşteri ile en düşük maliyetli

teslimat rotalarının tasarlanmasından ibaret olan araç rotalama problemi, dağıtım yönetiminde merkezi

bir yere sahiptir ve dünya çapında on binlerce taşıyıcı tarafından günlük olarak karşı karşıya

kalınmaktadır. Problem, uygulamada karşılaşılan çeşitli kısıtlamalardan dolayı çeşitli formlarda ortaya

çıkmaktadır. 50 yıldan fazla bir süredir, araç rotalama problemi, operasyonel araştırma topluluğunun

büyük bir kısmının dikkatini çekmiştir. Bu, kısmen sorunun ekonomik önemi nedeniyle değil, aynı

zamanda ortaya koyduğu metodolojik zorluklardan da kaynaklanmaktadır. Örneğin, Araç Rotalama

Probleminin (ARP) kapasite kısıtı eklenmemiş hali olan gezgin satıcı problemi artık binlerce ve hatta on

binlerce tepe için çözülebilmektedir. Buna karşılık, araç rotalama probleminin çözülmesi çok daha

zordur. Örneğin, 100 veya 200 müşterili yalnızca kapasite kısıtlamalarının mevcut olduğu basitleştirilmiş

araç rotalama problemini, kesin algoritmalar aracılığıyla çözmek hala zordur. Bu nedenle son yıllarda,

araştırma girişimcilerinin çoğu güçlü meta-sezgisellerin geliştirilmesine yönelmiştir (Laporte vd., 2013:

1-2).

Araç rotalama problemi ilk olarak Dantzig ve Ramser tarafından 1959 yılında ortaya konmuştur. İki

matematikçi, bir petrol dağıtım şirketinin verilerini kullanarak ARP’yi çözen ilk algoritmayı

uygulamıştır. Ardından, Clarke ve Wright (1964) geliştirdikleri Tasarruf (Savings) yöntemi ile mevcut

ARP çözümlerini geliştirmişlerdir (Namany, 2017: 12). Klasik ARP’de, homojen bir araç filosu, her

müşterinin bilinen bir talebi olduğu bir dizi müşteri lokasyonları verilmiştir. Görev, tüm müşterilerin

talebini karşılayacak minimum maliyette bir rota seti oluşturmak ve ayrıca bireysel rotaların, araç

kapasitesine ve rota uzunluğu kısıtlamalarına uymasını sağlamaktır. ARP’nin ifade edilmesi basit ve

anlaşılması kolay olmasına rağmen, deneyim pratikte çözülmesinin çok zor olduğunu göstermiştir.

Ayrıca uygulamada, firmanın birden fazla araca sahip olması, belirli müşterilerin belirli bir süre boyunca

hizmete ihtiyaç duyabilmesi, planlama ufkunun bir zamanda birkaç gün içermesi gibi ortaya çıkan birçok

başka komplikasyon da söz konusudur. ARP’yi çözmedeki güçlük ve pratikte ortaya çıkan ek hususların

sayısı nedeniyle, gerçek boyuttaki problemlerin tipik olarak sezgisel yöntemlerle çözülmesi gerekir. ARP

için kesin çözüm yöntemleri olarak tamsayılı programlama veya dinamik programlama gibi yöntemler

kullanılır ve hatta modern bilgi işlem kaynaklarında bile, bu yöntemler tipik olarak 100'den fazla müşteri

lokasyonuna sahip optimallik problemlerini çözemez. ARP, NP-Zor (polinomsal zamanda çözümü

olduğu ispatlanamayan) problemler kategorisine giren iyi bilinen bir tamsayılı programlama problemi

olduğundan dolayı bu problemi kesin yöntemlerle çözmek problem boyutu arttıkça zorlaşmaktadır.

Dolayısıyla gerçek dünyadaki ARP örnekleri binlerce düğüme sahip olabileceğinden ve problemi daha

da karmaşıklaştıran birçok ek kısıtlama içerebileceği için, yüksek kaliteli sezgisel yöntemlere olan ihtiyaç

açıktır (Groer, 2008: 1-2; Altman, t.y.: 6).

Depo

7

8

9

11

12

10

6

5 4

1

3

2

“Araç rotası” ifadesinin göründüğü ilk makale Golden vd. (1972) tarafından yazılmıştır. Araç

Rotalama Probleminin (ARP) diğer versiyonları 70'lerin başında ortaya çıkmıştır. Liebman ve Marks

(1970), atıkların toplanmasıyla ilişkili rotalama problemini temsil eden matematiksel modeller

sunmuşlardır. Levin (1971), filo taşıtları sorununu ortaya koymuştur. Wilson ve diğerleri (1971) engelli

kişiler için ulaşım hizmetinde telefon talebi sorununu ve Marks ve Stricker (1971) kamu hizmeti araçlarını

rotalamak için bir model sunmuşlardır. Bazı olasılıksal kavramlar, Golden ve Stewart (1975) tarafından

ARP ile ilişkilendirilmiştir. Solomon (1987)'de zaman pencerelerinin kısıtlamalarını probleme dâhil

etmiştir. Sarıklis ve Powell (2000), aracın, yolculuğun başladığı noktaya dönmediği bir problem

önermiştir (Toro vd., 2016: 363). Araç rotalama problemi için kesin algoritmaların geliştirilmesi 1981

yılında Christofides, Mingozzi ve Toth'un Networks’te yayınladığı iki makalenin yayınlanmasıyla

başlamıştır. Bu makalelerin ilki, durum uzayı gevşetmeli dinamik programlamaya dayalı bir algoritma

sunarken, ikincisi, q-yollarını ve k-en kısa yayılma ağaçlarını kullanan iki matematiksel formülasyon

önermiştir. Laporte vd. (1984), araç rotalama problemi için bir tamsayı modelinin doğrusal gevşeme

çözümünü temel alan ilk düzlem kesme yaklaşımını önermişlerdir. Bu seminal kavramlar daha yeni

algoritmalardan bazılarının içerisine girmeyi başarmıştır. O zamandan beri, matematiksel programlama

formülasyonlarına dayanan çeşitli kesin algoritmalar önerilmiştir. Bazı formülasyonlar araç akışı veya

mal akışı değişkenlerini içerir ve genellikle dal ve kesme ile çözülür. ARP, bazı geçerli eşitsizliklerin

eklendiği bir küme bölümleme problemi olarak da formüle edilebilir. Fukasawa vd. (2006) ve Baldacci

vd. (2008) tarafından gerçekleştirilen en başarılı uygulamalardan bazıları bu metodolojiye

dayanmaktadır. ARP için modern sezgisellerin gelişimi, 1990'larda meta-sezgisellerin ortaya çıkışıyla

başlamıştır. En iyi meta-sezgiseller, çözüm alanını aynı anda geniş ve derin bir şekilde araştıran ve

problemin çeşitli türevlerini çözebilen olmuştur (Laporte vd., 2013: 2).

Son yıllarda, ARP, yük dağıtım planlaması ve yönetiminin kombinatoryal optimizasyonu üzerinde

en çok çalışılanlardan biri olmuştur; bunun sebebi, gerçek hayattaki uygulamalardaki büyük önemi ve

ayrıca ciddi zor olmasından kaynaklanmaktadır (Santana, 2016: 1). Rekabetin artması ve çevre

koşullarının değişmesi sebebiyle rotalama problemlerine giderek daha fazla kısıtın eklenmesi araç

rotalama problemlerine uygun çözümler bulmayı giderek zorlaştırmaktadır (Erol, 2006: 7). Bu sebepten

dolayı araç rotalama problemi, problemin bileşenleri olan kısıtlar, araçlar, müşteriler, yollar ve rotalar

gibi çeşitli kriterlere göre Şekil 3’teki gibi sınıflandırılmıştır.

ARP

DARP

SARP

PARP

ÇDARP

ÖDSTARP

EZTDARP

BTARP

HFARP

ZPARP

MKARP

ÇDTDARP

KKARP

Kapasiteli Araç Rotalama Problemi (KARP), nakliye, dağıtım ve lojistik konularındaki pratik

uygulamalarla birlikte kombinatoryal optimizasyonundaki temel problemlerden biridir. KARP’nin

amacı, tek bir depoya dayalı bir kapasitedeki araç filosu için aşağıdaki sınırlamalar altında bir dizi

müşteriye hizmet vermek için minimum toplam maliyet rotalarını bulmaktır:

 Her rota depoda başlamalı ve depoda sonlanmalıdır,

 Her müşteri tam olarak bir kez ziyaret edilmelidir,

 Her bir güzergâhın toplam talebi, aracın kapasitesini aşmamalıdır (Borcinova, 2017: 463).

Araçların ortak bir depodan müşterilere minimum transit maliyetle ulaştırılması için homojen oldukları

ve belirli bir kapasiteye sahip oldukları kabul edilmektedir (Santana, 2016: 9-10).

Kapasiteli araç rotalama problemi, aşağıdaki gibi tanımlanabilir:

𝑉′ = {0,1,… , 𝑛}, 𝑛 + 1 tane köşelerin kümesi ve 𝐸, kenarların kümesi olmak üzere yönlendirilmemiş

bir 𝐺 = (𝑉′, 𝐸) grafiği verilsin. 0 köşesi depoya ve 𝑉 = 𝑉′ ⧵ {0} tepe noktası 𝑛 müşteriye karşılık

gelmektedir. Negatif olmayan bir 𝑑𝑖𝑗 maliyeti, her bir {𝑖, 𝑗} ∈ 𝐸 kenarı ile ilişkilidir. 𝑞𝑖 yükleri, depo 0’dan

(𝑞0 = 0) tedarik edilmektedir. Depo 0’ da 𝑄 kapasiteli özdeş 𝑚 araçların kümesi yerleştirilmiştir ve

araçlar müşterilere tedarik etmek için kullanılmaktadır. Bir rota, ziyaret edilen köşelerin toplam talebinin

araç kapasitesini geçmeyeceği şekilde depo 0'dan geçen en az basit bir grafik 𝐺 grafik devresi olarak

tanımlanır (Yeun vd., 2008: 207).

Kapasite kısıtlı araç rotalama probleminin notasyonlarını, amaç fonksiyonunu ve kısıtlama

denklemlerini içeren tipik bir matematiksel formülasyonu aşağıda verilmiştir (Kao vd., 2012: 4-5):

Notasyonlar:

0: depoların indeksi

𝑁: toplam müşteri sayısı

𝐾: toplam araç sayısı

𝐶𝑖𝑗: 𝑖 müşterisinden 𝑗 müşterisine seyahat ederken ortaya çıkan maliyet

𝑆𝑖: 𝑖 müşterisi için gereken servis zamanı, 𝑆0 = 0

𝑄: bir aracın maksimum yük kapasitesi

𝑇: bir aracın maksimum sürüş mesafesi

𝑑𝑖: 𝑖 müşterisinin talebi, 𝑑0 = 0

𝑋𝑖𝑗
𝑘 : 0 − 1 karar değişkeni

𝑋𝑖𝑗
𝑘 = {

1, 𝑖 𝑚üş𝑡𝑒𝑟𝑖𝑠𝑖𝑛𝑑𝑒𝑛 𝑗 𝑚üş𝑡𝑒𝑟𝑖𝑠𝑖𝑛𝑒 𝑘 𝑎𝑟𝑎𝑐𝚤 𝑡𝑎𝑟𝑎𝑓𝚤𝑛𝑑𝑎𝑛 𝑠𝑒𝑦𝑎ℎ𝑎𝑡
0, 𝑎𝑘𝑠𝑖 ℎ𝑎𝑙𝑑𝑒

𝑝: ceza katsayısı

𝑅: bir araç tarafından hizmet edilen müşterilerin kümesi,

|𝑅|: 𝑅’nin kardinalitesi

Amaç Fonksiyonu:

𝑀𝑖𝑛∑ ∑ ∑ 𝐶𝑖𝑗𝑋𝑖𝑗
𝑘𝐾

𝑘=1
𝑁
𝑗=0

𝑁
𝑖=0 (2.1)

Kısıtlar

∑∑𝑋𝑖𝑗
𝑘 = 1, 𝑗 = 1,2,… ,𝑁 (2.2)

𝑁

𝑖=0

𝐾

𝑘=1

∑∑𝑋𝑖𝑗
𝑘

𝑁

𝑗=0

= 1, 𝑖 = 1,2,… , 𝑁 (2.3)

𝐾

𝑘=1

∑𝑋𝑖𝑢
𝑘

𝑁

𝑖=0

−∑𝑋𝑢𝑗
𝑘

𝑁

𝑗=0

= 0, 𝑘 = 1,2,… , 𝐾; 𝑢 = 1,2,… ,𝑁 (2.4)

∑∑𝑋𝑖𝑗
𝑘𝑑𝑖 ≤ 𝑄,= 1,2,… , 𝐾 (2.5)

𝑁

𝑗=0

𝑁

𝑖=0

∑∑𝑋𝑖𝑗
𝑘(𝐶𝑖𝑗 + 𝑆𝑖) ≤ 𝑇, 𝑘 = 1,2,… , 𝐾 (2.6)

𝑁

𝑗=0

𝑁

𝑖=0

∑𝑋𝑖𝑗
𝑘

𝑁

𝑗=1

=∑𝑋𝑗𝑖
𝑘

𝑁

𝑗=1

≤ 1, 𝑖 = 0; 𝑘 = 1,2,… ,𝐾 (2.7)

∑𝑋𝑖𝑗
𝑘

𝑖𝑗∈𝑅

≤ |𝑅| − 1, 𝑅 ⊆ {1,2,… , 𝑁}; 2 ≤ |𝑅| ≤ 𝑁 − 1; 𝑘 = 1,2,… , 𝐾 (2.8)

𝑋𝑖,𝑗
𝑘 ∈ {0,1}, 𝑖, 𝑗 = 0,1,… ,𝑁; 𝑘 = 1,2,… ,𝐾 (2.9)

(2.1) denklemi kapasite kısıtlı araç rotalama probleminin amaç fonksiyonudur. (2.2) ve (2.3)

denklemi her müşteriye yalnızca bir araç tarafından hizmet verilebilmesini sağlar. (2.4) denklemi, her

araç için her düğümde sürekliliği korur. (2.5) denklemi, bir aracın toplam müşteri talebinin aracın

maksimum kapasitesini aşmamasını ifade eder. Benzer şekilde (2.6) denklemi, bir aracın toplam rota

mesafesinin rota uzunluğu sınırını aşmamasını sağlar. Denklem (2.7), her aracın en fazla bir defa

kullanılabileceğinden ve depoda başlayıp depoda sonlanması gerektiğinden emin olur. Alt tur eleme

kısıtları (2.8) denkleminde verilmiştir. (2.9) denklemi tamsayı kısıtııdır.

Zaman pencereli araç rotalama problemi, tartışmasız şu anda en geniş çapta çalışılan araç rotalama

problemi çeşididir. Klasik zaman pencereli araç rotalama problemi 1987’de Solomon, ardından 1999’da

Gehring ve Homberger tarafından tanıtılmıştır. Araç rotalama probleminin önemli bir uzantısı olan

zaman pencereli araç rotalama problemi, birçok gerçek dünya problemini modelleyebilen ve bilinen

talepleri olan müşterilere hizmet veren bir araç filosu için, bir merkezi depodan çıkan ve depoda

sonlanan bir dizi minimum maliyetli rotaları tasarlamaktan oluşan temel bir dağıtım yönetimi

problemidir. Müşteriler, araç kapasitelerinin aşılmaması için araçlara tam olarak bir kez tayin

edilmelidir. Bir müşterideki servis, müşterinin hizmet başlangıcına izin verdiği en erken zaman ve en

son zaman olarak belirlenen zaman penceresi içerisinde başlamalıdır. Banka teslimatları, posta

teslimatları, endüstriyel atık toplama, ulusal franchise restoran teslimatları ve okul otobüsü rotalama ve

güvenlik devriyesi hizmetleri gibi alanlar problemin uygulama alanları arasındadır (El-Sherbeny, 2010:

124; Santana, 2016: 13). ZPARP, önceden belirlenmiş zaman dilimi içerisinde, müşteri setinin sadece bir

kez ziyaret edildiği bir dizi araç yolunun belirlenmesinden oluşur. Zaman penceresi, zaman aralığı

olarak tanımlanır ve 𝑣 ∈ 𝑉 müşterisine atanan aracın zaman penceresi içerisinde ulaşması gerekir.

Genellikle zaman penceresi sınırlayıcıları, müşteriye hizmet verilmesi gereken [𝑒0, 𝑙0] zaman penceresi

içerisinde erken varış zamanı 𝑒0, geç varış zamanı 𝑙0 olarak tanımlanır. Öncelikli amaç, araç filosunu,

seyahat süresini ve bekleme süresini en aza indirmektir. Tüm filonun kapasiteyi aşmadan nakliye

rotasını depoda başlatması ve depoda sonlandırması gerekmektedir. Her rota depo ile ilişkilendirilmiş

zaman içerisinde başlamalıdır. Müşterinin zaman penceresine başlamadan önce aracın geldiği durum da

olabilir. Bu durumda, araç müşterinin bulunduğu yerde beklemek zorunda kalır ve sonuç olarak rota

üzerinde ekstra bekleme süresi sağlar. Ancak yine de geç varış yasaktır, çünkü araç müşteriye üst

sınırdan sonra teslimat yapılırsa çözüm mümkün olmaz. Her birinin belirli bir zaman penceresi olan 9

müşterinin 3 farklı rotaya tahsis edildiğini gösteren zaman pencereli araç rotalama problemine ait bir

örnek çözüm Şekil 4’te gösterilmektedir. Her bir rota bir araçla geçildiğinden dolayı toplam rota sayısı

kadar toplam araç sayısı söz konusudur.

Şekil 4’te ifade edilen ZPARP’i örneğine ait rotaların oluşturmuş olduğu çözüm aşağıda ifade

edilmiştir.

Araç 1 (Rota 1): 𝑫ep𝒐(𝟎)→𝟔→𝟑→𝟕→𝟏→𝑫𝒆𝒑𝒐(𝟎)

Araç 2 (Rota 2): 𝑫𝒆𝒑𝒐(𝟎)→𝟖→𝟒→𝑫𝒆𝒑𝒐(𝟎)

Araç 3 (Rota 3): 𝑫𝒆𝒑𝒐(𝟎)→𝟐→𝟓→𝟗→𝑫𝒆𝒑𝒐(𝟎)

Zaman penceresi kısıtlamasına göre, ZPARP’nin iki farklı durumunu ayırt edebiliriz. Sıkı Zaman

Pencereli Araç Rotalama Problemi: Zaman penceresi kısıtı, yerine getirilmesi gereken problemdir. Esnek

Zaman Pencereli Araç Rotalama Problemi: Zaman penceresi kısıtlamasının ihlaline izin verilir, başka bir

deyişle, daha sonraki bir servis, çözümün uygulanabilirliğini etkilemez. Bununla birlikte, çözüm

maliyetlerini artıran amaç fonksiyonuna yansıyan bir ceza ile gelir. (Pan vd., 2013: 2256; Santana, 2016:

13).

ZPARP, farklı coğrafi bölgelerde yer alan çeşitli taleplere ve belirli zaman aralıklarına sahip bir dizi

müşteriye hizmet vermek için depodan çıkan müşterilerin taleplerini karşıladıktan sonra başlangıç

noktasına geri dönen bir araç filosundan ibarettir. Amaç, araçların kapasitelerini, seyahat süresi

kısıtlamalarını ve müşteriler tarafından belirlenen zaman penceresi kısıtlamalarını ihlal etmeden tüm

müşterilere minimum maliyetle (seyahat mesafesi vb.) hizmet etmeleri için araçlara uygun rotaların

bulunmasıdır.

0

1

7

3

6

4

8

9

5

2
 e1 l1

 e7 l7

 e3 l3

 e0 l0

 e6 l6

e4 l4

 e8 l8

 e2 l2

e9 l9

 e5 l5

• Her bir rota deponun zaman aralığına uygun bir şekilde depoda başlayıp, depoda bitmelidir.

• Bütün müşterilerin talepleri tek seferde ve tek bir araçla karşılanmalıdır.

• Aynı rotadaki müşterilerin toplam talep miktarları maksimum aracın kapasitesi kadar olmalıdır.

• Her bir müşterinin talebi müşterilere ait zaman pencereleri içerisinde karşılanmalıdır. Araç

müşterinin açılış zamanından önce gelmişse o zamana kadar beklemek durumundadır.

ZPARP’nin kısıtları; bir dizi aynı araç, merkezi bir depo düğümü, bir dizi müşteri düğümü, depo ve

müşteri birbirine bağlayan bir ağdan oluşmaktadır. 𝑁 + 1 tane müşteri ve 𝐾 tane araç vardır. Depo

düğümü, 0 olarak ifade edilir. Ağdaki her yay, iki düğüm arasındaki bir bağlantıyı temsil eder ve aynı

zamanda hareket ettiği yönü gösterir. Her rota depodan başlar, müşteri düğümlerini ziyaret eder ve daha

sonra depoya geri döner. Ağdaki rotaların sayısı kullanılan araçların sayısına eşittir. Her araç bir rotaya

tahsis edilmiştir. Bir 𝑐𝑖𝑗 maliyeti ve bir 𝑡𝑖𝑗 seyahat süresi ağın her bir yayı ile ilişkilidir. Ağdaki her müşteri

sadece bir araç tarafından ziyaret edilmektedir. Her araç aynı 𝑞𝑘 kapasitesine ve her müşteri değişen bir

𝑚𝑖 talebine sahiptir. 𝑞𝑘, 𝑘 aracı tarafından seyahat edilen rotadaki tüm taleplerin toplamına eşit veya

daha büyük olmalıdır, bu, hiçbir aracın aşırı yüklenemeyeceği anlamına gelir. Zaman penceresi kısıtı, en

erken varış zamanı ve en son varış zamanı olmak üzere önceden tanımlanmış bir zaman aralığı ile

gösterilir. Araç, en geç varış saatinden daha geç olmamak kaydıyla müşterilere ulaşmalıdır. Eğer en

erken varış saatinden daha erken ulaşırsa, beklemelidir. Her müşteri aynı zamanda, malların yükleme /

boşaltma zamanını dikkate alarak rotaya bir servis süresi uygular. Araçların bireysel rotalarını da esasen

deponun zaman penceresi olan toplam rota süresi içerisinde tamamlamaları gerekir. Zaman pencereli

araç rotalama probleminde üç tip temel karar değişkeni vardır. 𝑥𝑖𝑗𝑘 (𝑖, 𝑗 ∈ {0,1,… ,𝑁}; 𝑘 ∈ {1,2,… ,𝐾}; 𝑖 ≠

𝑗), 𝑘 aracı 𝑖 müşterisinden 𝑗 müşterisine seyahat ettiğinde 1 değerini aksi halde 0 değerini alan temel

karar değişkenidir. 𝑡𝑖 karar değişkeni bir aracın müşteriye vardığı zamanı ve 𝑤𝑖 karar değişkeni ise 𝑖

düğümündeki bekleme zamanını gösterir. Amaç, toplam seyahat maliyetini en aza indirerek aynı anda

tüm kısıtlamaları karşılayan bir ağ tasarlamaktır (Tan vd., 2001: 283; Göçken vd., 2018: 776-777).

ZPARP’nin matematiksel modeli, modelde kullanılan değişkenler ve parametreler aşağıda ifade

edilmiştir (Jawarneh ve Abdullah, 2015: 3-5):

Karar Değişkeni

𝑥𝑖𝑗𝑘 = {
1, 𝑒ğ𝑒𝑟 𝑘 𝑎𝑟𝑎𝑐𝚤 𝑖. 𝑚üş𝑡𝑒𝑟𝑖𝑑𝑒𝑛 𝑗. 𝑚üş𝑡𝑒𝑟𝑖𝑦𝑒 𝑔𝑖𝑑𝑒𝑟𝑠𝑒
0, 𝑎𝑘𝑠𝑖 ℎ𝑎𝑙𝑑𝑒

, 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ {0,1,…𝑁}

Parametreler

𝑡𝑖 − 𝑖 Noktasına varış zamanı

𝑤𝑖 − 𝑖 Noktasında bekleme zamanı

𝐾 − Araçların sayısı

𝑁 − Müşterilerin sayısı (0 merkezi depo olarak tanımlanır)

𝑐𝑖𝑗 − 𝑖 Müşterisi ile 𝑗 müşterisi arasındaki seyahat maliyeti

𝑡𝑖𝑗 − 𝑖 Müşterisi ile 𝑗 müşterisi arasındaki seyahat süresi

𝑚𝑖 − 𝑖 Müşterisinin talebi

𝑞𝑘 − 𝑘 Aracının kapasitesi

𝑒𝑖 − 𝑖 Müşterisi için en erken varış zamanı

𝑙𝑖 − 𝑖 Müşterisi için en son varış zamanı

𝑓𝑖 − 𝑖 Müşterisi için servis zamanı

𝑟𝑘 − 𝑘 Aracı için maksimum rota süresi

Amaç Fonksiyonu

𝑀𝑖𝑛 ∑ ∑ ∑𝑐𝑖𝑗𝑥𝑖𝑗𝑘

𝐾

𝑘=1

𝑁

𝑗=0,𝑗≠𝑖

𝑁

𝑖=0

 (2.10)

Kısıtlar

∑∑𝑥𝑖𝑗𝑘

𝑁

𝑗=1

≤ 𝐾 , 𝑖 = 0 (2.11)

𝐾

𝑘=1

∑𝑥𝑖𝑗𝑘

𝑁

𝑗=1

=∑𝑥𝑗𝑖𝑘

𝑁

𝑗=1

≤ 1, 𝑖 = 0; 𝑘 ∈ {1,2,… ,𝐾} (2.12)

∑ ∑ 𝑥𝑖𝑗𝑘

𝑁

𝑗=0,𝑗≠𝑖

= 1, 𝑖 ∈ {1,2,… , 𝑁}

𝐾

𝑘=1

 (2.13)

∑ ∑ 𝑥𝑖𝑗𝑘

𝑁

𝑖=0,𝑖≠𝑗

= 1

𝐾

𝑘=1

, 𝑗 ∈ {1,2,… ,𝑁} (2.14)

∑𝑚𝑖

𝑁

𝑖=1

∑ 𝑥𝑖𝑗𝑘 ≤ 𝑞𝑘

𝑁

𝑗=0,𝑗≠𝑖

, 𝑘 ∈ {1,2,… ,𝐾} (2.15)

∑ ∑ 𝑥𝑖𝑗𝑘(𝑡𝑖𝑗 + 𝑓𝑖 +𝑤𝑖)

𝑁

𝑗=0,𝑗≠𝑖

≤ 𝑟𝑘 , 𝑘 ∈ {1,2,… , 𝐾} (2.16)

𝑁

𝑖=1

 𝑡0 = 𝑤0 = 𝑓0 (2.17)

∑ ∑ 𝑥𝑖𝑗𝑘(𝑡𝑖 + 𝑡𝑖𝑗 + 𝑓𝑖 +𝑤𝑖)

𝑁

𝑖=0,𝑗≠𝑖

𝐾

𝑘=1

≤ 𝑡𝑗 , 𝑗 ∈ {1,2,… ,𝑁} (2.18)

𝑒𝑖 ≤ (𝑡𝑖 +𝑤𝑖) ≤ 𝑙𝑖 , 𝑖 ∈ {1,2,… ,𝑁} (2.19)

𝑐𝑖𝑗 = √(𝑖𝑥 − 𝑗𝑥)
2 + (𝑖𝑦 − 𝑗𝑦)

2
 (2.20)

(2.10) denklemi, zaman pencereli araç rotalama probleminin temel amaç fonksiyonunu ifade eder.

(2.11) nolu kısıt, maksimum 𝐾 rotasını veya depodan çıkan araçları gösterir. Her rotanın depoda

başlayıp ve depoda bitmesi gerektiğini belirten kısıt ise (2.12)’tür. (2.13) ve (2.14) nolu kısıtlar, her

müşterinin yalnızca bir araç tarafından tam olarak bir kez ziyaret edilmesini sağlar. (2.15) ve (2.16)

denklemleri sırasıyla kapasite ve azami seyahat süresi kısıtlamalarını tanımlar. (2.17), (2.18) ve (2.19)

kısıtları zaman penceresini açıklar. Denklem (2.20) ise seyahat maliyetini hesaplar. Burada 𝑖𝑥 𝑖

müşterisinin 𝑥 koordinatı ve 𝑖𝑦 ise 𝑖 müşterisinin 𝑦 koordinatıdır.

ZPARP’yi çözmek için kesin, sezgisel ve meta-sezgisel yöntemlerden faydalanılır. Bu problemler,

polinomsal zamanda bir çözümü olduğunu ispatlayamadığımız karar problemlerinin karmaşıklık

sınıfına girdiğinden kesin yaklaşımlar sadece küçük boyutlu problemlerin çözümünde etkilidir.

Dolayısıyla büyük boyutlu problemlerin çözümü için sezgisel ve meta-sezgisel yöntemler kullanılır (Ai

ve Kachitvichyanukul, 2009: 521). ZPARP’nin çözümü için araştırmacılar tarafından geliştirilmiş pek çok

yöntem literatürde yer almaktadır. Bu yöntemler, optimal çözüme ulaşıp ulaşmaması durumuna göre

kesin ve sezgisel olmak üzere iki gruba ayrılır. ZPARP’nin çözümü için kullanılan yöntemler Şekil 5’te

verilmiştir.

NP-zorlu optimizasyon problemlerini en uygun şekilde çözmek, bilgisayar tarihinin başlangıcından

bu yana araştırmacıları zorlayan bir konu olmuştur. Son yıllarda önemli ilerleme kaydedilmesine rağmen

çoğu problem tipi için yalnızca oldukça küçük durumlar çözülebilmektedir. Araç rotalama problemleri,

çözülmesi zor olan kanıtlanmış problemler grubuna dahil olduğundan sadece orta büyüklükteki

problemler tutarlı bir şekilde en uygun çözüme ulaşmaktadır. Bu da kesin çözüm yöntemleri ile

sağlanmaktadır. Bu tam arama yöntemleri, en iyisini elde edene kadar çözümün her olasılığını

hesaplamayı önerir. Bu nedenle son zamanlarda araç rotalama problemlerinin çözümü için kesin

yaklaşımlar ileri sürülmüştür. Sonuç olarak, optimal olarak çözülebilen örnekler açısından önemli

sonuçlar elde edilmiştir (Ropke, 2005: 146; Santana, 2016: 16). Hem uygulama alanının genişliği hem de

NP-zor yapısı nedeniyle araç rotalama problemi oldukça dikkat çeken bir problem haline gelmiştir.

ARP‘nin bir genellemesi olan ZPARP de NP-zor sınıfında bir optimizasyon problemi olması sebebiyle

araştırmacılar tarafından dikkat çekmiş ve literatürde önemli bir yere sahip olmuştur. Bu problemin

çözümü için kullanılan kesin çözüm yöntemleri, hedef programlama (Ghoseiri ve Ghannadpour, 2010;

Calvete vd., 2007; Aydemir, 2006), dal ve kesme (Brad vd., 2002), dal ve sınır (Tezer, 2009;), doğrusal

programlama (Akca, 2015;), sütun türetme (Qureshi vd., 2009; Qureshi vd., 2010; Liberatore vd., 2011),

düzlem kesme (Cook ve Rich, 1999), dinamik programlama (Kok vd., 2010) ve küme bölümleme

algoritmasıdır (Tezer, 2009; Alvarenga vd., 2007).

Çözüm Yöntemleri

Kesin Çözüm

Yöntemleri

Sezgisel Çözüm

Yöntemleri

 Küme Bölümleme

 Hedef Programlama

 Dal ve Kesme

 Doğrusal Programlama

 Dal ve Sınır

 Sütun Türetme

 Düzlem Kesme

 Dinamik Programlama

Meta-Sezgisel Klasik Sezgiseller

 Genetik Algoritma

 Tabu Arama Algoritması

 Tavlama Benzetimi

 Yerel Arama Algoritması

 Karınca Kolonisi Algoritması

 Yapay Arı Kolonisi Algoritması

 Ateş Böceği Algoritması

 Yarasa Algoritması

 Parçacık Sürü Optimizasyonu

 Harmoni Arama Algoritması

 Kurbağa Sıçrama Algoritması

 Memetik Algoritma

 Bakteriyel Yiyecek Arama

 Evrimsel Algoritma

 Yusufçuk Algoritması

 Guguk Kuşu Arama Algoritması

 Tasarruf Algoritması

 En Yakın Komşu Algoritması

 Süpürme Algoritması

 Sıralı Ekleme Sezgiseli

Genel olarak, kombinatoryal problemlerin formüle edilmesi kolaydır, ancak tamsayılı programlama

problemleri olarak formüle edildikleri için çözülmesi zordur. Bu problemler NP-zor problemler sınıfına

ait olduğundan, çözümleri için çoğu zaman sezgisel yöntemler kullanılır. Sezgisel bir arama yöntemi,

makul bir hesaplama süresi içinde iyi bir çözümü belirlemek için problem yapısından faydalanan bir

prosedür olarak görülebilir. Bu nedenle, bir sezgisel aramanın verimliliği, üretilen çözümün kalitesi ve

gereken bilgisayar süresi açısından belirlenir. Özellikle büyük boyutlu gerçek yaşam problemlerinde

çözüm üretmek için “kesin yöntemler” yerine sezgisel yöntemleri kullanmak daha uygundur. Gerçekte,

bir gerçek dünya uygulamasıyla ilişkilendirilen matematiksel modelin boyutu ve verilerin kesinliği

olmadığı düşünüldüğünde, "optimal" bir çözüm aramak tamamen gerçekçi olmayabilir. Bazı

durumlarda, kesin yöntemlerin hızı, iyi bir sezgisel yöntemin hızından daha yavaştır. Buluşsal yöntemler

genel olarak daha sezgiseldir ve son kullanıcı için daha erişilebilirdir. Parametrelerin ayarlanması

gerekse bile, son kullanıcılar genel olarak parametrelerin değiştirilmesinin etkilerini öngörebilir (Ferland

ve Costa, 2001: 2).

Yüksek zorluk derecesi ve gerçek hayatta karşılaşılan problemlerden biri olan ZPARP’de de en iyi

çözümlerin ortaya konması için sezgisel yöntemler yoğun olarak kullanılmaktadır. Son yıllarda yapılan

çalışmalar incelendiğinde, çalışmaların büyük bir kısmında ZPARP’nin çözümü için en çok sezgisel ve

meta-sezgisellerin kullanıldığı görülmektedir. Tasarruf (saving), süpürme (sweep), en yakın komşu,

ekleme sezgiselleri klasik sezgisel yöntemler arasında yer alırken; genetik, tabu arama, tavlama

benzetimi, yerel arama, karınca kolonisi, yapay arı kolonisi, değişken komşu arama, ateş böceği, yarasa,

parçacık sürü optimizasyonu, harmoni arama, kurbağa sıçrama, memetik algoritma, bakteriyel yiyecek

arama, evrimsel algoritma ve yusufçuk gibi algoritmalar meta-sezgisel yöntemler sınıfında yer

almaktadır.

ARP’nin çözümünde kullanılan klasik sezgiseller, rota oluşturucu yöntemler, rota geliştirici

yöntemler ve iki aşamalı yöntemler olmak üzere 1992 yılında Laporte tarafından 3 gruba ayrılmıştır. Bu

yöntemler, başlangıç çözümlerin oluşturulmasında kullanılan rota oluşturucu sezgiseller, bu sezgiseller

yardımıyla oluşturulan çözümlerin niteliğini arttırmak için kullanılan rota geliştirici sezgiseller ve önce

grupla sonra rotala veya önce rotala sonra grupla türü iki aşamalı yöntemlerden oluşmaktadır (Şahin,

2014: 71).

Araç rotalama problemini çözmek için kullanılan bir dizi sezgisel yöntem vardır. Araç rotalama

problemini çözen en iyi bilinen sezgisel yöntemlerden biri Clarke ve Wright’in tasarruf algoritmasıdır

(Jerabek vd., 2016: 117). Algoritma, değişken olarak araç sayısının kullanıldığı problemlerde ele

alınmaktadır. Rotaların oluşturulması ve kaç adet araç kullanılması gerektiği bu yöntem ile

bulunmaktadır. Paralel ve sıralı olmak üzere iki tip tasarruf algoritması söz konusudur. Bu yöntemin

adımları aşağıda verilmiştir.

 Adım 1. Her bir müşteri çifti için 𝑆𝑖𝑗 tasarrufları aşağıdaki gibi hesaplanır.

 𝑆𝑖𝑗 = 𝑑𝑖0 + 𝑑0𝑗 − 𝑑𝑖𝑗 (2.21)

𝑆𝑖𝑗 tasarruf değerleri büyükten küçüğe doğru sıralanır.

 Adım 2. Paralel tasarruf algoritmasında 𝑆𝑖𝑗 tasarruf değerlerine göre büyükten küçüğe sıralanan

(𝑖, 𝑗) müşteri ikilileri; sıralamada 𝑥𝑦 ve 𝑦𝑧 müşteri çiftleri arka arkaya geliyorsa araç kapasitesi dikkate

alınmak koşuluyla 0 − 𝑥 − 𝑦 − 𝑧 − 0 doğrultusunda bir rota oluşturularak, aksi halde 𝑥𝑦 ve 𝑡𝑧 olacak

şekilde bu müşteri çiftleri arka arkaya geldiğinde bu müşteriler için ayrı ayrı rota olauşturulacak şekilde

birleştirilir. Sıralamada dikkate alınan müşteri çiftleri ile daha önce oluşturulan rotalar karşılaştırılır ve

uygunsa rotaya eklenir. Burada birden fazla rota oluşturulur ve oluşturulan bu rotalar paralel versiyonda

işlenerek müşteri çiftlerini bu rotalara atamak mümkündür. Tasarruf algoritmasının bir diğer çeşidi olan

sıralı versiyonunda kapasite kısıtı gözönüne alınarak 𝑥𝑦 ve 𝑡𝑧 formatındaki müşteri çifti birleştirilerek

0 − 𝑥 − 𝑦 − 𝑡 − 𝑧 − 0 doğrultusunda rotalar oluşturulur. Sıralamada dikkate alınan müşteri ikilileri aynı

rota için karşılaştırılır ve kapasite kısıtına uygunsa rotaya eklenir. Bir rota tamamen oluşuncaya kadar

tüm müşteri ikilisi kapasite kısıtı dikkate alınarak elden geçer. Her iki versiyonda da müşteri ikilileri

toplam maliyet minimum olacak şekilde rotalara aktarılır. Tasarruf algoritmasının paralel versiyonu

sıralı versiyonuna oranla daha iyi sonuçlar doğurur. Sıralı tasarruf aloritmasında yalnızca bir rota baz

alınır ve bu rotayı elde etmek için 𝑆𝑖𝑗 tasarruf sıralaması dikkate alınır. Paralel versiyonda müşteri çiftinin

birden fazla rota ile uygunluğunun 𝑆𝑖𝑗 sıralamasına bakılarak kontrol edilmesi ve bu sayede daha fazla

alternatif gözden geçirilir (Erol, 2006: 30).

Backer ve Schaffer (1989), tasarruf algoritmasının bir uzantısını kullanmışlardır. Tasarruf

algoritmasına ilişkin benzer bir sezgisel de Solomon tarafından 1987 yılında geliştirilmiştir. Ayrıca

Landeghem (1988), iki kriterli tasarruf sezgiselini çalışmasında ele almıştır. İki kriterli sezgisel yöntemi,

müşteriler arasında bir bağlantının zamanlama açısından ne kadar iyi olduğunu ölçmek için zaman

pencerelerini kullanmıştır (El-Sherbeny, 2010: 127). Demircioğlu (2009), ZPARP ile ilgili çalışmasında

tasarruf yöntemini geliştirmiş ve Mersin’deki bir dağıtım firmasına uygulama yapmıştır. Bu araştırma

ile firmalara daha uygun dağıtım rotası belirlenerek maliyette tasarruf ve bundan sonra yapılacak olan

çalışmalara fayda sağlaması açısından önemli sonuçlar elde edilmiştir.

ş

En yakın komşu sezgiseli, araç rotalama problemlerini çözmek için sıklıkla kullanılan bir diğer

algoritmadır. Genellikle rota geliştirme sezgisellerini test etmek için başlangıç çözüm üretmek için

kullanılır. Oldukça hızlı olmasına rağmen, çözümler neredeyse her zaman optimalden uzaktır. En yakın

komşu algoritması, bir dizi şehirden rastgele bir başlangıç şehri seçer, onu bir rotaya ekler ve o şehri

ziyaret edilen şehir olarak işaretleyerek şehir listesinden kaldırır. Daha sonra, algoritma bir dizi ziyaret

edilmemiş şehirden rotaya daha önce eklenmiş olan şehre en yakın şehri bulur ve onu şehrin ziyaret

edildiğini gösteren rotaya ekler. Bu süreç tüm şehirler ziyaret edilene kadar tekrar eder (Jakara vd., 2019:

458-459).

Göçken vd. (2018), ZPARP’nin çözümü için çok amaçlı genetik algoritmanın başlangıç

popülasyonunun oluşturulmasında en yakın komşu algoritmasını kullanmışlardır.

Solomon, ARP tur oluşturma algoritmalarını paralel ve sıralı olmak üzere ikiye ayırmıştır. Paralel

prosedürler, rota sayısının önceden belirlenmiş bir sayı ile sınırlı olduğu veya serbestçe oluşturulduğu

eş zamanlı rota inşası yoluyla oluşturulurken, sıralı prosedürler, tüm müşteriler planlanana kadar her

seferinde bir rota oluşturur.

Sıralı ekleme sezgiseli, çözümün kalitesi ve çözümü bulmak için gereken hesaplama süresi açısından

çok etkilidir. İlk çözümleri bulmak için başlatma kriterleri, rotaya eklenecek ilk müşteriyi seçme sürecini

ifade eder. En yaygın kullanılan başlatma kriterleri, ya en uzak rotalanmamış müşteri ve en erken teslim

tarihine sahip müşteri ya da en erken ve en son kabul edilebilir varış zamanı kriterleridir. Bir rotaya ilk

eklenen müşteriye "çekirdek müşteri" adı verilir. Çekirdek müşteri seçilip bir rotaya yerleştirildiğinde,

sıralı ekleme algoritması, yönlendirilmiş düğümler için, yakın zamanda ve kısmen oluşturulmuş rotaya

bir müşteri eklemek için gereken ek mesafeyi ve zamanı en aza indiren yerleştirme yerini dikkate alır.

Bir sonraki adımdaki seçim kriterleri, yeni bir doğrudan rota yerine müşteriyi mevcut kısmi rotaya

eklemekten kaynaklanan avantajı en üst düzeye çıkarmaya çalışır. Burada dikkat edilmesi gereken

önemli noktanın düğümler ile müşteri terimlerinin birbirinin yerine kullanıldığıdır (Joubert ve Claasen,

2006: 107).

Jawarneh ve Abdullah (2015), ZPARP’ne uyarlamış oldukları arı kolonisi optimizasyon

algoritmasında başlangıç yiyecek kaynaklarının oluşturulmasında sıralı ekleme sezgiselinden

yararlanmışlardır.

Gillet ve Miller (1974) tarafından geliştirilen bu algoritmada depo merkezli bir doğrunun

döndürülmesi ile rotalarda yer alacak müşteriler elde edilir. Döndürme süresince doğru üzerinden geçen

müşteriler iki sınıfa ayrılır. Grubun kapatılması kapasite veya mesafe kısıtına bağlıdır. Bu kısıtlardan biri

aşıldığı zaman grup kapatılarak yeni bir grupla devam edilir. Merkez deponun da eklenmesi ile

oluşturulan nokta grupları genel olarak gezgin satıcı problemi gibi çözülmesiyle rotalar oluşturulur.

Müşteri koordinatları 𝜃 açı ve 𝜌 doğru uzunluğu olmak üzere (𝜃𝑖 , 𝜌𝑖) polar formatındadır. Talep

noktalarının küçükten büyüğe doğru sıralanması 𝜃 açısına göre gerçekleşir. Ayrıca kapasite ve mesafe

kısıtı gözönüne alınarak talep noktaları gruplanır. Süpürme algoritmasının genel işleyişi aşağıdaki

gibidir (Erol, 2006: 37-38).

 Adım 1: Depo ve müşteri noktalarının yeri harita üzerinden belirlenerek koordinatlar polar

formatında (𝜃𝑖 , 𝜌𝑖) yazılır. Rotaya tahsis edilmemiş herhangi bir araç tespit edilir.

 Adım 2: Depodan saat yönünün tersinde 0° açı ile taranmaya başlanır. Bir müşteri ile

karşılaşıldığında müşterinin talep miktarı aracın kapasitesini geçmezse müşteri araca atanır. Aksine bir

durum söz konusu olduğunda saat yönünün tersinde hareket edilir. Diğer araca geçilmesi, her iki yönde

de araca müşteri atanamadığında gerçekleşir.

 Adım 3: Tarama, önceki aracın kaldığı yerden devam eder. Daha önce rotalama olmayan bir

müşteri ile karşılaşılırsa, müşterinin araca atanması kapasite kısıtını aşmayacak şekilde gerçekleşir. Tüm

noktaların rotalaması bitene kadar bu süreç devam eder.

Göçken vd. (2018), ZPARP’nin çözümü için çok amaçlı genetik algoritmanın başlangıç

popülasyonunun oluşturulmasında süpürme algoritmasını kullanmışlardır. Diğer taraftan Hertrich vd.

(2019), çalışmalarında basit ve etkili süpürme algoritmasını kullanarak probleme çözüm bulmuşlardır.

Meta-sezgisel yöntemler, arama alanını araştırmak için zeki bir şekilde farklı kavramları

birleştirerek, bir alt sezgisel çalışmayı yönlendiren yinelemeli bir çözüm süreci olarak tanımlanır.

Öğrenme stratejileri, bilgiyi en uygun çözümlere ulaştırmak ve bilgileri yapılandırmak için kullanılır.

Meta-sezgisel algoritmalar da, karmaşık problemleri çözmek için kullanılabilecek bu yaklaşık teknikler

arasındadır (Said vd., 2014: 2). Genellikle çok sayıda probleme uygulanan güçlü teknikler ve çözüm

kavramı olarak ifade edilir. Bir meta-sezgisel, tam veya eksik bir tek çözümü veya her bir yinelemede bir

çözümler topluluğunu manipüle edebilir (El Sherbeny, 2010: 129). Meta-sezgiler, sezgisel tarama ve /

veya geleneksel arama teknikleri de dahil olmak üzere diğer arama yöntemleri arasındaki işbirliğini

koordine etmek için üst düzey problem çözme stratejileri olarak düşünülmüştür. Bu basit prosedür,

genellikle kuş ve böcek sürülerinin davranışları, metallerdeki soğutma prosedürleri veya doğal evrim

gibi doğal veya fiziksel olaylardan esinlenerek dizayn edilir.

Günümüzde çok sayıdaki gerçek dünya problemi meta-sezgisel teknikler kullanılarak

çözülmektedir. Otomasyon ve robotik, biyoinformatik, ekonomi ve finans, mühendislik tasarımı, sağlık

ve tıp, görüntü işleme, bilgi işleme ve veri madenciliği, lojistik ve araç planlama, makine öğrenmesi,

imalat ve endüstriyel uygulamalar, fizik uygulamalar, güç ağı optimizasyonu, rotalama, zamanlama,

güvenlik ve güven, yazılım mühendisliği, stratejik ve askeri uygulamalar, telekomünikasyon, iş gücü

planlama ve diğer alanlarda ortaya çıkan birçok gerçek dünya optimizasyon probleminde meta-sezgisel

teknikler kullanılmış ve kullanılmaya devam edilmektedir (Nesmachnow, 2014: 322-329). Bu meta-

sezgisel yöntemler arasında karınca kolonisi, tabu arama, tavlama benzetimi, yapay arı kolonisi, parçacık

sürü optimizasyonu gibi yöntemler bu problemlerde sıkça kullanılan yöntemler arasındadır (Şahin, 2014:

73). ZPARP’nin çözümünde kullanılan metasezgisel yöntemlerin kullanıldığı çalışmalar takip eden

bölümde incelenmiştir.

Genetik algoritmalar, arama ve optimizasyon problemlerini çözmek için kullanılabilecek adaptif

yöntemlerdir. Biyolojik organizmaların genetik süreçlerine dayanmaktadır. Birçok nesil boyunca, doğal

popülasyonlar, doğal seçilim ve "en uygun olanın hayatta kalması" ilkelerine göre evrimleşmektedir.

Genetik algoritmalar bu süreci taklit ederek, eğer uygun şekilde kodlanmışlarsa, gerçek dünya

problemlerine çözümler "geliştirebilir". Genetik algoritmaların gücü, tekniğin sağlam olması ve diğer

metotların çözmesi için zorlayıcı olanlar da dâhil olmak üzere geniş bir problem alanıyla başarılı bir

şekilde başa çıkabilmesinden kaynaklanmaktadır. Genetik algoritmaların bir probleme küresel optimum

çözümü bulması garanti edilmez, fakat genellikle problemlere "kabul edilebilir derecede hızlı ve iyi"

çözüm bulmakta iyidirler. Belirli problemleri çözmek için özel tekniklerin mevcut olduğu durumlarda,

nihai sonucun hem hızında hem de doğruluğunda GA’lardan daha iyi performans göstermeleri

muhtemeldir. O halde, GA’lar için temel zemin, bu tür tekniklerin olmadığı zor alanlardır. Mevcut

tekniklerin iyi çalıştığı durumlarda bile, bunları bir GA ile hibritleyerek iyileştirmeler yapılmıştır

(Beasley vd., 1993: 1-2). Kalıtım, mutasyon, seçim ve çaprazlama gibi doğal evrimden esinlenen teknikleri

kullanarak optimizasyon problemlerine çözümler üreten daha geniş evrimsel algoritma sınıfına ait olan

algoritmanın basit genel prosedürü aşağıdaki gibidir (Yadav ve Prajabati, 2012: 1-2).

Adım 1: Bireylerin başlangıç popülasyonunu seç.

Adım 2: Bu popülasyondaki her bireyin uygunluğunu hesapla.

Adım 3: Sona erene kadar bu nesli tekrarla (Zaman sınırı, yeterli uygunluk elde edilene kadar).

Adım 4: Üreme için en uygun bireyleri seç.

Adım 5: Çaprazlama ve mutasyon işlemleriyle yeni bireyler üret.

Adım 6: Yeni bireylerin bireysel uygunluğunu hesapla.

Adım 7: En az uygunluğa sahip popülasyonu yeni bireylerle değiştir.

Genetik algoritmalar biyoinformatik, filogenetik, hesaplamalı bilim, mühendislik, ekonomi, kimya,

üretim, matematik, fizik, lojistik gibi alanlarda optimizasyon problemlerine uygulanmaktadır (Verma ve

Verma, 2012: 5). Bu uygulama alanlarından biri olan lojistik dağıtımın özü ve odak noktası olan zaman

pencereli araç rotalama problemi üzerine yapılan araştırmalar, temel olarak geliştirilmiş akıllı

optimizasyon algoritmalarından olan genetik algoritmaya odaklanmaktadır. Bu araştırmalar aşağıda

verilmiştir.

Braysy (2001), zaman pencereli araç rotalama problemini çözmek için geliştirilen genetik algoritma

tabanlı yaklaşımları kısaca gözden geçirmiş ve saf genetik algoritmalarla elde edilen sonuçların,

yayınlanmış olan en iyi sonuçlarla rekabetçi olmadığı, ancak farklılıkların çok büyük olmadığı kanısına

varılmıştır. Berger ve Barkaoui (2004), yeni bir hibrit genetik algoritmanın paralel versiyonunu ele

almışlardır. Ele alınan yaklaşım, en iyi bilinen sezgisel rotalama yöntemleri olarak kullanılan tabu arama,

çoklu karınca koloni sistemi, rota-komşuluk bazlı gibi algoritmalarla karşılaştırılmış ve çok rekabetçi

olduğu gösterilmiştir. Alvarenga vd. (2007), etkin bir genetik algoritma ve küme bölme formülasyonu

yoluyla seyahat uzaklığını temel amaç olarak kullanan sağlam bir sezgisel yaklaşım sunmuşlardır.

Dursun (2009), ZPARP için rassal sayı kodlamalı melez olmayan bir genetik algoritma yaklaşımını ele

almıştır. Diğer yöntemlerle rekabet edebilecek bir model ortaya koymak çalışmanın hedefi olmuştur.

Nazif ve Lee (2010), gereklilikleri karşılayan ve minimum toplam maliyet sağlayan, optimum bir

teslimat rotası bulan, tam bir yönlendirilmemiş iki taraflı bir grafik tarafından tasarlanan optimize

edilmiş bir çaprazlama operatörü kullanarak genetik bir algoritma önermişlerdir. Algoritma, bazı

yaklaşımlarla karşılaştırılmış ve sonuçlar, algoritmanın bulunan çözümlerin kalitesi açısından rekabetçi

olduğunu göstermiştir. Ghoseiri ve Ghannadpour (2010), hem gerekli toplam filo büyüklüğünün hem de

toplam hareket mesafesinin en aza indirildiği ve kapasite ve zaman pencereleri kısıtlarının güvence altına

alındığı çok amaçlı bir problemi ele almışlardır. Problemin formülasyonu için bir hedef programlama

yaklaşımı ve bunu çözmek için uyarlanmış, etkin bir genetik algoritma kullanmışlardır. Yöntem,

literatürde en iyi bilinen yaklaşımlarla rekabet edebilecek çözümler sağlamıştır. Kiremitçi vd. (2014), çok

araçlı, dağıtım toplamalı, zaman pencereli rotalama problemine özgü gerçek değerli kodlamalı bir

genetik algoritma geliştirerek çözüm aramışlardır. Ele alınan algoritma, Li ve Lim (2001)’in geliştirdiği

tabu gömülü tavlama benzetimi meta-sezgiseli ve bilinen en iyi sonuçlar ile karşılaştırılmış, algoritmanın

iyi sonuçlar verdiği ve bu problemler için iyi bir alternatif çözüm yöntemi olabileceği anlaşılmıştır.

Kuram (2016), zaman pencereli araç rotalama probleminde kullanılan yöntemleri detaylı bir şekilde

inceleyerek, literatürde yer alan test problemlerini genetik algoritmalar ile çözmüştür. Gupta ve Diwaker

(2017), karınca koloni optimizasyonu ve genetik algoritmanın birleşiminden oluşan yöntemi

kullanmışlardır. Yöntemde, popülasyon çeşitliliğini arttırmak ve çözüm alanını tamamen

genişletebilmek için genetik algoritmadaki mutasyon operatörleri yer almıştır. Algoritma, karınca koloni

optimizasyonu, genetik algoritma gibi yöntemlerle karşılaştırılmış ve sonuç olarak yaklaşımın, problemi

etkili bir şekilde çözebildiği, problemin amaçlarının yerine getirilmesinden anlaşılmıştır. Göçken vd.

(2018), çok amaçlı genetik algoritma yaklaşımını ele almışlar ve bu yaklaşımla ZPARP’ne yönelik daha

önce yapılan çalışmalardan daha etkin sonuçlar elde etmişlerdir.

Tabu araması, yerel bir optimuma yakalanmaktan özellikle kaçınan, genişletilmiş komşulukları inşa

etmek için bir yinelemeli meta-strateji prosedürüdür. Bu küresel optimizasyon meta-sezgiseli ilk olarak

Glover tarafından ortaya atılmış, Glover ve arkadaşları tarafından geliştirilmiştir. Amaç fonksiyonu

değerinde bir bozulmaya yol açsa bile, bir çözümden en iyi komşusuna hareket ederek arama uzayını

araştırmaktan ibarettir. Bu şekilde yerel optimadan hareket etme olasılığı arttırılır. Bir çözümün ardışık

komşuları üretilir ve amaç fonksiyon değerleri incelenir. Döngüden kaçınmak için, yakın zamanda

incelenen çözümler belirli sayıda yineleme için yasaklanır veya tabu olarak ilan edilir (Barbarosoğlu ve

Ozgur, 1999: 259). Tabu listesi, arama boyunca keşfedilen çözümleri veya daha genel olarak bu

çözümlerin bazı ilgili özelliklerini bir listeye kaydederek belleği kullanma yollarından biridir.

Başarılı bir Tabu Arama uygulamasında, yoğunlaştırma ve çeşitlendirme arasında iyi bir dengenin

olması önemlidir. Yoğunlaşma, genellikle iyi bir çözüm çevresinde, çözüm alanının bazı bölgelerinin

ayrıntılı bir keşfidir. Çeşitlendirme, araştırmanın henüz keşfedilmemiş ve birbirinden ayrı, çözüm

açısından umut verici bölgelere doğru yönlendirilmesini içerir. Operasyonel açıdan, Tabu Arama, her bir

yinelemede, tek bir S çözümünden, en iyi N (S) çözümüne, tabu listesinde değil veya eğer öyleyse, bir

miktar aspirasyon kriterini yerine getirerek başarılı bir şekilde hareket eder (Brandao, 2011: 141). Tabu

arama prensibi, sürekli olarak mevcut en iyi çözümü geliştirmeye ve önceki hareketlerin listesini hafızaya

kaydederek, araştırmayı daha önce seyahat edilen bölgelerin dışında yönlendirmeye çalışırken,

çözümlerin alanı üzerinde hareket etme yöntemine dayanmaktadır (Kaddouri ve Omary, 2017: 82-83).

Mevcut en iyi çözümü geliştirme prensibine dayanan bu yaklaşım araç rotalama problemlerine de çok

sayıda uygulanmıştır. Çözüm kalitesi ve süresi bakımından iyi sonuç verdiği için ARP’nin bir uzantısı

olan ZPARP’de de en çok kullanılan yöntemler arasında olduğu aşağıda verilen çalışmalarca

ispatlanmıştır.

Badeau vd. (1997), zaman pencereli araç rotalama probleminin çözümü için bir paralel tabu arama

sezgiselini geliştirerek, iş istasyonları ağı üzerinde uygulamışlardır. Ampirik olarak, orijinal sıralı

algoritmanın paralelleştirilmesinin, uygulamada önemli hızlandırmalar sağlarken aynı miktarda

hesaplama için çözelti kalitesini düşürmediği gösterilmiştir. Schulze ve Fahle (1999), problem için yeni

bir paralel tabu arama algoritmasını tanımlamışlardır. Basit müşteri değişimlerine dayanan ve mümkün

olmayan geçici çözümleri düşünmeye olanak sağlayan bir komşuluk yapısı kullanılmıştır. İleri sürülen

bu algoritma literatürdeki bazı sezgiseller ile karşılaştırılmış ve algoritma çözüm kalitesini koruyarak,

önemli hızlandırmalar sağladığı sonucuna ulaşılmıştır. Braysy ve Gendreau (2002), tabu arama

yaklaşımlarının çok etkili olduğu sonucuna yaptıkları kıyaslamalı analizlerden elde etmişlerdir. Chiang

ve Russell (2004), karma bir komşuluk yapısı ve yüksek kalitede çözümler üretmek için gelişmiş bir

iyileştirme prosedürü kullanarak bir tabu arama çözüm yöntemi geliştirmişlerdir. k-opt ve λ-değişim

komşulukları birlikte ele alınarak karma bir komşuluk yapısı oluşturulmuştur. Hesaplamalı sonuçlardan

algoritmanın etkili olduğu ispatlanmıştır.

Homberger ve Gehring (2005), zaman pencereli araç rotalama problemi için iki aşamalı hibrit bir

meta-sezgiseli yöntem olarak kullanmışlardır. İlk aşamada, (µ;λ) evrim stratejisi ile araç sayısının en aza

indirilmesi, ikinci aşamada ise tabu arama algoritması kullanılarak toplam uzaklığın en aza indirilmesi

planlanmıştır. Komşuluk yapıları olarak insert, 2-opt ve change operatörleri kullanılmıştır. Ming-Yao vd.

(2008), basit bir komşuluk yapısına sahip bir tabu arama algoritmasını tasarlamışlardır. Fu vd. (2008),

zaman pencereli araç rotalama problemlerinin farklı türleri için birleşik bir ceza fonksiyonu ve birleşik

bir tabu arama algoritması tasarlamışlardır. Algoritmada, 2-değişim üretim mekanizmasına dayanan

karışık bir komşuluk yapısı kullanılmıştır. Yu vd. (2011), tabu arama algoritması ve karınca koloni

algoritmasından oluşan melez bir yaklaşımı ele almışlardır.

Moccia vd. (2012), daha önce geliştirilen tabu arama sezgiselinin komşuluk yapısında değişiklikler

yaparak, zaman pencereli araç rotalama problemi için bu algoritmanın etkili olduğuna hesaplamalı

sonuçlardan ulaşmışlardır. Taş vd. (2014), esnek zaman pencereli araç rotalama problemi için tabu arama

algoritması aracılığı ile bir çözüm prosedürü geliştirmişlerdir. Tabu arama algoritmasına dayanan çözüm

prosedürü, literatürde bulunan diğer sezgisellerden daha iyi performans gösterdiği karşılaştırma

sonucunda anlaşılmıştır. Kırcı (2016), google haritalarından gerçek dünya uygulamaları olarak kabul

edilen zaman pencereli araç rotalama problemleri için tabu arama algoritmasını ve hopfield sinir ağlarını

kullanmıştır.

ZPARP’nin çözümünde kullanılan bir diğer meta sezgisel de tavlama benzetimidir. Kavramsal

olarak tavlama benzetimi; bir malzemenin bir sıvı stat içine ısıtıldığı ve tekrar kristalize edilmiş bir katı

duruma geri soğutulduğu, tavlama olarak bilinen fiziksel bir işleme benzer olduğu gerçeğinden

kaynaklanmaktadır. Geliştirilen ilk meta-sezgisellerden birisidir. Tavlama benzetimi kullanıldığında

mevcut çözümün komşuluğunda en iyi çözüm aranmaz. Bunun yerine biri rastgele bir komşuluktan

basitçe bir çözüm çizer. Çözüm daha iyiyse, her zaman yeni bir güncel çözüm olarak kabul edilir, ancak

çözüm mevcut çözümden daha kötüyse, yalnızca belirli bir olasılıkla kabul edilir. Kabul olasılığı

kademeli olarak düşürülen bir sıcaklık tarafından belirlenir. Sıcaklığın düşürülmesiyle, seçim yeni

çözümün kabulünde giderek daha seçici hale gelir. Tavlama benzetimi kavramı termodinamik ve

metalürjiden gelir: füzyondaki bir metal yeterince yavaş bir şekilde soğutulduğunda, minimum enerjili

bir yapıda katılaşma eğilimi gösterir (El-Sherbeny, 2010: 129).

Chiang ve Russell (1996), zaman pencereli araç rotalama problemi için 3 tavlama benzetimi meta-

sezgiselini geliştirmişlerdir. Kullanılan yöntemlerde Osman’ın λ-değişim mekanizması, Christofides ve

Beasley’in k-düğüm değişim süreci olmak üzere iki farklı komşuluk yapısı uygulanmıştır. Hesaplamalı

deneyler, benzetilmiş tavlama uygulamalarının, temel benzetim tavlama algoritmalarının yavaş

yakınsamasının üstesinden gelerek, bir 486DX2/66 kişisel bilgisayarı kullanarak makul CPU zamanında

çok iyi sonuçlar elde edebileceğini göstermiştir. Bent ve Hentenryck (2004), bahsi geçen ulaşım problem

için iki aşamalı melez bir algoritma önermişlerdir. İlk olarak tavlama benzetimi kullanılarak araç sayısı

en aza indirilmiş, ardından, çok sayıda müşterinin yerini değiştirebilecek büyük geniş bir komşuluk

araması kullanarak seyahat maliyetini en aza indirilmiştir. Deneysel sonuçlar, geliştiren algoritmanın

etkinliğini ve algoritmanın çok sağlam olduğunu göstermiştir. Li ve Lim (2003), yerel aramaları

çeşitlendirmek ve yoğunlaştırmak için yeniden başlatmalar gibi tavlama yöntemlerine dayanan bir meta-

sezgiseli önermişlerdir. Yerel arama komşuluklarını oluşturmak için yöntemde 3 kenar değiştirme

operatörü (shift, exchange, re-arrange) kullanılmıştır. Karşılaştırmalı deneylerden en iyi sonuçlar elde

edilmiştir.

Chen ve Ting (2005), geliştirilmiş karınca koloni algoritması ile tavlama benzetimi algoritmasını bir

araya getirerek melez bir algoritma oluşturmuşlardır. Geliştirilmiş karınca koloni sisteminde 2-opt ve

ekleme olmak üzere iki farklı yerel arama operatörü kullanılmıştır. Tabu arama, çoklu karınca koloni

sistemi, genetik algoritma gibi daha önceki meta-sezgisel yöntemlerle karşılaştırıldığında, en iyi

performansı göstermiş ve toplam seyahat mesafesinin en düşük olmasını sağlamıştır. Lin vd. (2006), yerel

arama ile tavlama benzetim algoritmasını birleştirmişlerdir. Optimal çözümü hızlı ve verimli bir şekilde

bulmak için takas ve ekleme yerel aramaları kullanılmıştır. Geliştirilen yaklaşım, ortalama araç sayısını

ve çoğu sınıftaki rota maliyetleri önceki araştırmalarınkinden daha iyi veya ona eşit olarak bulmuştur.

De Oliveira vd. (2006), monoton olmayan tavlama benzetim tekniğini rastgele yeniden başlatmalı (Çok

Başlamalı) bir tepeye tırmanma stratejisine bağlayan verimli bir hibrid sistemi uygulamışlardır. Toplam

mesafenin minimuma indirilmesi, temel amaç olarak ele alınmıştır. İleri sürülen bu melez sistem, toplam

seyahat mesafesine odaklanan yerel arama, tabu arama gibi yöntemlerle karşılaştırılmış ve bu sistemin

üstün olduğu ortaya çıkmıştır.

Woch ve Lebkowski (2009), sıralı tavlama benzetimi algoritmasını kullanmışlardır. Ampirik kanıtlar,

benzetilmiş tavlamanın iki kriterli optimizasyon problemlerine başarıyla uygulanabileceğini

göstermiştir. De Oliveira ve Vasconcelos (2010), zaman pencereli araç rotalama probleminde toplam

mesafenin en aza indirilmesi için tepe tırmanma ve rastgele yeniden başlama ile tavlama benzetiminin

birleşiminden oluşan bir algoritma geliştirmişlerdir. Hibrit çözüm hakkında daha derin bir araştırma

yapmak için, metoda dâhil olan farklı parametrelerin davranışını incelemek için istatistiksel bir analiz

(varyans analizi ve lineer regresyon) uygulanmıştır. Taner vd. (2012), tavlama benzetimi ve yinelemeli

yerel arama olmak üzere iki meta-sezgisel yöntemi geliştirmişlerdir. Algoritmalar, literatürde en iyi

bilinen yöntemlerle karşılaştırılmış ve yinelemeli yerel arama algoritması optimizasyon sırasında

bulunan en iyi çözümlerin etrafında daha yoğun çözümler aramasından dolayı tavlama benzetimi

algoritmasından daha iyi genel sonuçlar vermiştir.

Moghaddam vd. (2011), yeni bir matematiksel modeli geliştirmişler ve problemin çözümü için

benzetimli tavlama yöntemini kullanmışlardır. Mahmudy (2014), çelik veya cam gibi bir malzemenin

ısıtıldığı ve daha sonra soğutulduğu tavlamanın fiziksel işleminden ilham alınarak oluşturulan tavlama

benzetimi algoritmasını geliştirmişlerdir. Komşuluk çözümlerinin etkili bir şekilde araştırılması için özel

fonksiyonlar oluşturulmuştur. Önerilen yaklaşım, literatürde yer alan iyi bilinen kıyaslama problemleri

ile karşılaştırılarak değerlendirilmiştir.

Yerel Arama meta-sezgiselleri, son zamanlarda çok sayıda kombinatoryal sorun için çok etkili

olduğu kanıtlanan kombinatoryal arama ve optimizasyon problemleriyle mücadelede ortaya çıkan bir

yöntem sınıfıdır. Yerel Arama teknikleri, bir çözüm alanının yinelemeli araştırmasına dayanır: Her

yinelemede, bir Yerel Arama algoritması bir çözümden “komşularından” birine, yani (bir anlamda)

başlangıçtaki yakın olan çözümlere adım atar. Bu teknik ailesinin en büyük dezavantajı, çok çeşitli

sorunlu durumlarda sağlamlık eksikliğidir. Aslında, çoğu durumda, bu yöntemler makul çalışma

sürelerinde iyi sonuçlar elde etmeyi sağlarken, diğer durumlarda Yerel Arama teknikleri sözde yerel

minimumda tutulur. Son zamanlarda literatürde bu sorunun çözümüne yönelik birkaç yaklaşım ortaya

çıkmıştır. Bu yaklaşımlar, istatistiksel özelliklerin kullanılmasından (örneğin, çözüm alanının rastgele

keşfedilmesinden), öğrenme yöntemlerinin veya melez tekniklerin uygulanmasına kadar uzanmaktadır

(Di Gaspero, 2003: iv). Yapay zekâ uygulamaları, yöneylem araştırması, mühendislik ve bioenformatik

gibi alanlarda geniş bir uygulamaya sahip olan yerel arama yaklaşımı aynı zamanda araç rotalama

problemlerinde de yaygınca kullanılmaktadır (Şahin, 2014: 76).

Polacek vd. (2004), bir dizi komşu yapıları tanımlamak için çapraz değişim ve i-çapraz değişim

operatörlerini kullanarak değişken komşuluk arama felsefesine dayanan bir algoritma tasarlamışlardır.

Lin vd. (2006), yerel arama ile tavlama benzetim algoritmasını birleştirerek, optimal çözümü hızlı ve

verimli bir şekilde bulmak için takas ve ekleme yerel aramaları kullanılmışlardır. Hashimoto vd. (2008),

araçların rotalarını belirlemek için 2-opt, or-opt ve çapraz değişim olmak üzere standart komşuluklarda

ufak değişiklikler yaparak bir yerel arama algoritmasını kullanmışlardır. Taner vd. (2012), tavlama

benzetimi ve yinelemeli yerel arama olmak üzere iki meta-sezgisel yöntemi ele almışlardır. Dhahri vd.

(2014), tamsayılı doğrusal programlama ve genel değişken komşuluk aramaya ilişkin melez bir meta-

sezgisel geliştirmişlerdir. Miranda ve Conceiçao (2016), yinelenen yerel aramaya dayanan meta-

sezgiselini, en düşük beklenen maliyetle en iyi rotayı bulmak ve belirli hizmet düzeylerinin

karşılandığını garanti etmek için tasarlamışlardır.

Çözülmesi zor kombinatoryal problemlerin çözümü için kullanılan meta-sezgisel tekniklerden birisi

de karınca kolonisi algoritmasıdır. Karınca kolonisi algoritması, karınca kolonisinin, karınca yuvasından

yiyecek kaynağına en kısa yolu bulma sürecindeki davranışını taklit eder. S. D. Shtovba’nın tanımına

göre koloninin zeki davranışı sayesinde mümkün olan temel ilke, elementler arasındaki düşük seviyeli

etkileşimin bir sonucu olarak küresel hedeflere ulaşmak için dinamik bir mekanizma kümesi olarak öz-

örgütlenme ilkesidir. Bu etkileşim, herhangi bir merkezi etki ortadan kalkarken sistem unsurlarının

yalnızca yerel bilgileri kullanması anlamına gelir. Bu gibi durumlarda, sürü zekası, farklı türden bir

işbirlikçi davranış olarak kabul edilir. Bir karınca kolonisi, aslında, ajanları temel kurallara göre

etkileşime giren çok ajanlı bir sistemdir. Bu nedenle, ajanların ilkel davranışlarına rağmen, sistemin

davranışı son derece makul ve optimal şartlara yakındır.

Karınca kolonisi algoritmaları, gerçek karıncaların davranışlarına benzer yapay karıncaların

kullanımına dayanır. Doğada karıncalar arasındaki etkileşim, doğrudan ve dolaylı bilgi aktarma

yöntemleri kullanılarak gerçekleştirilir. Doğrudan yol, bir yiyeceğin yanı sıra görsel ve kimyasal

temasların paylaşılmasıdır. Dolaylı yöntem, bazı kimyasal maddelerin (feromon), belirli bir alanda

hapsolmuş karıncalar tarafından kullanılmasına dayanır; bu, diğer karıncaların hareketinden sonra bir

iz olarak kalır. Bu tür bir etkileşim zamanla dağılır ve stigmergy olarak adlandırılır. Stigmergy aşağıdaki

gibi çalışır.

Bir karınca yiyecek ararken rastgele hareket eder ve sabit miktarda feromon bırakır. Başka bir karınca

bu iz ile karşılaştığında ilerleyip ilerlememeye karar vermelidir. Eğer onunla birlikte hareket etmeye

karar verirse, kendi feromonu ile mevcut izi güçlendirir, bu da bir sonraki karıncaların bu yolu seçmesi

ihtimalini arttırır. Böylece bu yolda ne kadar karınca hareket ederse, o yol diğer karıncalar için o kadar

çekici olur. Ek olarak, daha kısa bir rota kullanan karınca hızla karınca yuvasına geri döner ve

feromonunu iki kez bırakır. Dolayısıyla feromon kısa yollarda birikir. Ayrıca, feromon zamanla

buharlaşarak daha az arzu edilen yolların tespit edilmesini zorlaştırır ve dolayısıyla kullanımlarını

azaltır. Ama yine de, rastgele yol seçimi karınca kolonisinin alternatif yolları tanımlamasına izin verir ve

rotayı kesen engellerin başarılı bir şekilde atlanmasını sağlar. Bu, koloni davranışının adapte olabilirliği

için koşullar yaratır (Zhikharevich vd., 2016: 86). Karıncaların bu yolculukları esnasındaki karar verme

süreci Şekil 6’da ifade edilmiştir.

Karıncalar karar verme noktası olan A noktasında karşılaştıklarında bazıları bir tarafı bazıları ise

diğer tarafı rastgele seçerler. Bu karıncaların aynı hızda gittiğini varsayalım, kısa kenarı seçenler karar

verme noktasına B’ye uzun kenarı seçenlerden daha hızlı ulaşırlar. Tesadüfen kısa tarafı seçen karıncalar

yuvaya ilk ulaşanlardır. Bu nedenle kısa taraf, uzun olandan daha önce feromon alır ve bu gerçek,

karıncaların kısa yolu seçme olasılığını artırır. Sonuç olarak, feromon miktarı kısa tarafta uzun taraftan

daha yüksek hızda bırakılır, çünkü karıncalar kısa tarafı uzun taraftan daha fazla seçerler. Şekil 6’daki

kesik çizgi sayısı, yaklaşık olarak karınca sayısıyla doğrudan orantılıdır. Yapay karınca kolonisi sistemi

de, çeşitli optimizasyon problemlerini çözmek için bu karınca kolonisi sistemi ilkesinden yapılır. Çünkü

feremon karıncaların karar vermesinde bir kilit noktadır (Ostfeld, 2011: 4).

Karınca kolonisi algoritması ilk olarak gezgin satıcı problemine uygulanması için tanıtılmış ve o

zamandan beri birçok ayrık optimizasyon problemi için uygulanmıştır. Atama problemleri, grafik

renklendirme, maksimum klik problemi, çizelgeleme ve dahası araç rotalama problemleri gibi klasik

problemlere de uygulanmaktadır (Katiyar vd., 2015: 4). Karınca kolonisi algoritmasını çözüm yöntemi

olarak kullanan ZPARP ile ilgili çalışmalar aşağıda ifade edilmiştir.

Gambardella vd. (1999), çoklu amaç fonksiyonunu art arda optimize etmek için bir yapay karınca

kolonileri hiyerarşisini tasarlamışlardır. Kuo vd. (2004), zaman pencereli araç rotalama problemi için

yöntem olarak karınca kolonisi optimizasyon algoritmasını ve zaman değişkenlerini bulanık

A B

Karar verme noktası

Feremon

Karınca

değişkenlere dönüştürmek ve en kısa araç rotasını aramak için bulanık küme teorisini kullanmışlardır.

Tan vd. (2005), karınca kolonisi algoritmasının temel işleyişini, iki karınca kolonisine talimat verecek

şekilde iki adımda inşa etmişlerdir.

Chen ve Ting (2005), geliştirilmiş karınca koloni algoritması ile tavlama benzetimi algoritmasını bir

araya getirerek melez bir algoritma oluşturmuşlardır. Geliştirilmiş karınca koloni sisteminde 2-opt ve

ekleme olmak üzere iki farklı yerel arama operatörü kullanılmıştır. El Hassani vd. (2008), zaman

pencereli araç rotalama problemi için tavlama benzetimi ile karınca koloni algoritmasının

birleştirilmesiyle oluşturulan melez algoritmanın etkin olduğunu göstermeyi amaçlamışlardır. Yu ve

Yang (2011), karınca koloni algoritmasında farklı günlerde sezgisel bilgi toplamak için çok boyutlu

feromon matrisi ve algoritmanın performansını artırmak için ise iki çaprazlama operasyonu

kullanılmıştır. Yeni turların yerel olarak optimize edilmesini sağlamak için 2-opt algoritmasından

yararlanılmıştır.

Balseiro vd. (2011), problem için ekleme sezgiselleri ile hibritleştirilmiş karınca koloni sistemi

algoritmasını sunmuşlardır. Ortaya çıkan algoritma, birkaç kıyaslama probleminde bilinen en iyi

sonuçları eşleştiren veya geliştiren rekabetçi bir sonuç vermiştir. Yu vd. (2011), tabu arama algoritması

ve karınca koloni algoritmasından oluşan melez bir yaklaşımı ele almışlardır. Karınca koloni

algoritmasında kullanılan komşu arama, tabu arama işleminde de komşu çözümleri seçmek için

kullanılmıştır. Ding vd. (2012), karınca koloni algoritmasının performansını artırmak için tasarruf

algoritması ve λ-değişim mekanizmasından yararlanmışlardır. Ekleme sezgiseli ile melezleştirilmiş

karınca koloni algoritması, yapay zeka sezgiselleri, geliştirilmiş genetik algoritma, tavlama benzetimi,

tabu arama gibi yöntemlerle karşılaştırıldığında, algoritmanın rekabet edilebilir sonuçlar doğurduğu

ortaya çıkmıştır. Gupta ve Diwaker (2017), karınca koloni optimizasyonu ve genetik algoritmanın

birleşiminden oluşan yöntemi kullanmışlardır. Yöntemde, popülasyon çeşitliliğini arttırmak ve çözüm

alanını tamamen genişletebilmek için genetik algoritmadaki mutasyon operatörleri yer almıştır.

Yapay arı kolonisi algoritması, 2005 yılında Karaboğa’nın küresel nümerik fonksiyon optimizasyonu

için geliştirdiği, bal arısı sürüsünün yiyecek ararkenki davranışını simüle eden, popülasyon bazlı bir

meta-sezgisel yaklaşımdır. Basitliği ve uygulama kolaylığı nedeniyle, yapay arı koloni algoritması

sürekli ve ayrık optimizasyon problemlerini çözmek için yaygın olarak kullanılmaktadır (Neelima vd.,

2016: 1684).

Yapay arı koloni algoritmasındaki amaç, nektar miktarı maksimum olan çiçek parçalarını bulmaktır

(Hussain vd., 2020: 795). Bu algoritma yiyecek kaynakları olarak adlandırılan bireylerin/ çözümlerin bir

popülasyonunu korur. Popülasyon, işçi, gözcü ve kâşif arılar olmak üzere üç yapay arı grubu tarafından

geliştirilen SN yiyecek kaynaklarından oluşmaktadır. İşçi arılar grubunda her arı belirli bir yiyecek

kaynağına karşılık gelir. Bu arı yiyecek kaynağının konumunu hafızaya alır. İşçi arılar en iyi yiyecek

kaynağını bulabilmek için yiyecek kaynağının komşuluğunda arama yaparlar. Daha sonra yeni yiyecek

kaynakları işçi arılar tarafından güncellenip, bu yeni yiyecek kaynakları ile ilgili bilgiyi kovandaki gözcü

arılarla paylaşırlar. Gözcü arılar işçi arılardan farklı bir şekilde çalışır. Sömürme, gözcü arılar tarafından

rulet tekerleği seçimi ile gerçekleşir. Yani her gözcü arı, işlenecek kaliteye göre en iyi yiyecek kaynağını

olasılıkla seçmektedir. Daha iyi bir konum bulmak için seçilen yiyecek kaynağı, gözcü arılar tarafından

geliştirilmektedir. Kâşif arı olarak adlandırılan yeni bir tür yapay arı, arama uzayını araştırmak için ara

sıra gönderilir. Bir yiyecek kaynağı, işçi ve gözcü arılar tarafından belli sayıda denemeden (bir kontrol

parametresi olan limit) sonra geliştirilemezse bu yiyecek kaynağı terkedilecek fakir bir yiyecek kaynağı

olarak düşünülür ve kâşif arı tarafından rastgele üretilen yeni bir yiyecek kaynağı ile bu yiyecek kaynağı

yer değiştirir. Yapay arı koloni algoritmasında durdurma kriteri karşılanıncaya kadar tekrarlamalı bir

şekilde üç çeşit yapay arı grubu çözüm alanını aramak için gönderilir. Başlangıçta işçi arıların sayısı ve

gözcü arıların sayısı, yiyecek kaynaklarının sayısına yani SN popülasyon büyüklüğüne eşittir (Li ve

Yang, 2016: 363). Bu algoritma kullanılarak zaman pencereli araç rotalama problemi için yapılan çok

sayıda çalışma aşağıda belirtilmiştir.

Iqbal (2012), bal arılarının yiyecek ararkenki zeki davranışlarından esinlenen yeni ve etkili meta-

sezgisellerden yapay arı koloni algoritmasını esnek zaman pencereli araç rotalama problemine

uyarlamıştır. Yaklaşımın performansı, literatürde bilinen en iyi yöntemler ile karşılaştırılmış ve

algoritmanın, makul bir süre içinde daha kaliteli çözümler elde ettiği ortaya çıkmıştır. Shi vd. (2012),

global arama kapasitesini artırmak için kullanılan turnuva seçim stratejisi ile yapay arı koloni

algoritmasının birleşiminden oluşan bir sezgiseli ileri sürmüşlerdir. Nikolic vd. (2013), problemi çözmek

için arı koloni optimizasyon meta-sezgiselinden yararlanmışlardır. Başlangıç çözüm (başlangıç rotalar)

için basit ekleme sezgiseli kullanılmıştır. Rotadaki ilk düğüm rastgele bir şekilde belirlenmiş, bundan

sonra, diğer tüm düğümler ekleme maliyetine göre rotaya yerleştirilmiştir. Sonuçlardan, yöntemin test

edilmiş tüm iyi bilinen referans örnekleri için yüksek kaliteli çözüm üretebileceği ortaya çıkmıştır.

Jawarneh ve Abdullah (2015), bal arılarının sosyal iletişim modellerini taklit eden popülasyon tabanlı

bir algoritma olan arı kolonisi optimizasyonunu probleme uyarlamışlardır. Algoritmanın performansı

parametrelerine bağlıdır, bu yüzden etkinliğini ve sağlamlığını artırmak için çevrimiçi (kendinden

uyarlamalı) parametre ayarlama stratejisi kullanılmıştır. Başlangıç çözüm greedy sezgiseli kullanılarak

üretilmiştir. Ayrıca, çözümün kalitesi ve çözümü bulmak için gereken hesaplama süresi açısından çok

etkili olan sıralı ekleme sezgiseli kullanılmıştır. Uyarlanan algoritma, temel arı kolonisi optimizasyonu

algoritması ile karşılaştırılmış ve bu algoritma, araç sayısı ve ortalama 31 sürüş mesafesi bakımından

daha iyi performans göstermiştir. Alzaqebah vd. (2016), temel yapay arı koloni algoritmasının kâşif arı

aşaması boyunca güçlü bir keşif gerçekleştirme yeteneğinden yoksun olmasından dolayı keşfedilen

arıların listesinin azami deneme sayısını (limit) aşan çözümleri ezberleyebilmesi için terkedilmiş

çözümlerin bir listesinin tanımlandığı bir geliştirilmiş yapay arı koloni algoritmasını önermişlerdir.

Hesaplamalı sonuçlar, geliştirilen algoritmanın, orijinal algoritmadan daha iyi performans gösterdiğini

ve literatürdeki en iyi bilinen sonuçlarla karşılaştırıldığında iyi çözümler ürettiğini göstermiştir.

Yu vd. (2016), Çin'in Dalian kentinde, zaman pencereli araç yönlendirme problemi olarak

tanımlanabilecek gerçek bir batı tarzı yiyecek dağıtım problemini ele almışlardır. Problem için bir

tamsayılı doğrusal model ve problemi çözmek için bir çaprazlama işlemi ve bir mutasyon işlemi ve

uyarlanabilir bir strateji olarak adlandırılan yeni bir stratejiye sahip bir yapay arı koloni algoritması

geliştirilmiştir. Çaprazlama operatörü yeni daha iyi bir yiyecek kaynağı üretmek için, mutasyon

operatörü ise yiyecek kaynağının çeşitliliğini korumak için kullanılmıştır. Toplam uzaklık ve hesaplama

zamanı açısından orijinal yapay arı koloni algoritması ile karşılaştırıldığında en iyi sonuçları elde

etmiştir. Mao vd. (2016), belirsiz zamana bağlı esnek zaman pencereli araç rotalama probleminde hem

ulaşım maliyetlerini (toplam seyahat mesafesi ve araç sayısı) hem de servis maliyetlerini (erken ve geç

gelenler) dikkate alan yeni bir matematiksel model geliştirmişlerdir. Problemi çözmek için yapay arı

koloni algoritmasının bir çeşidi kullanılmıştır. İşçi ve gözcü arı evresinde sömürü araştırmasında

komşuluk yapısı olarak bir insert operatörü tasarlanmıştır. Kâşif arı evresinde ise yeni çözüm elde etmek

için swap-reverse operatörü kullanılmıştır. Hesaplamalı sonuçlar, bu yaklaşımın uygulanabilirliğini

göstermiştir.

Yao vd. (2017), yapay arı koloni algoritmasının performansını, çaprazlama işlemine ve tarama

stratejisine dayanan yerel bir optimizasyonla geliştirmişlerdir. Klasik zaman pencereli araç rotalama

problemi deneyinde en iyi bilinen çözüm ile yapılan karşılaştırma, algoritmanın yeteneğini

doğrulamıştır. Worawattawechai (2017), yapay arı koloni algoritmasını geliştirerek zaman pencereli geri

dönüş yüklemeli araç rotalama problemine uygulamışlardır. Başlangıç çözümü (yiyecek kaynağı), rulet

tekerleği seçimli en yakın komşu metodu tarafından oluşturulmuştur. Ayrıca, algoritmada gözcü arılar

için sıralı arama, λ-değişim tekniği ve 1-hareketli rota içi değişimin birleşiminden oluşan yasaklı bir liste

olan üç strateji önerilmiştir. Küçük ve orta büyüklükteki problemler için algoritmanın performansının

daha iyi olduğu hesaplamalı sonuçlardan ortaya çıkmıştır. Alzaqebah vd. (2018), zaman pencereli araç

rotalama problemi için arılar algoritmasının kullanımını ve algoritmanın güçlü ve zayıf yönlerini

incelemişlerdir. Ele aldıkları arılar algoritmasının kaliteli çözümler ürettiği, literatürdeki en modern

yaklaşımlarla karşılaştırılabilir çözümler üretebileceği yapılan testlerce anlaşılmıştır.

Tuntitippawan ve Asawarungsaengkul (2018), zaman pencereli geri dönüş yüklemeli araç rotalama

problemi için λ-değişimi ve 2-opt yerel aramaları ile birleştirilen yapay arı koloni algoritmasını

kullanmışlardır. Başlangıç çözümler, en yakın komşu sezgisel odaklı, rasgele ağırlıklı zaman tarafından

üretilmiştir. Komşuluk arama mekanizmaları olarak λ-değişim ve 2-opt kullanılmıştır. Yerel aramalı

yapay arı koloni algoritması, genetik algoritma, diferansiyel bir evrim yaklaşımı ve hibrit bir meta-

sezgisel gibi yöntemlerle karşılaştırıldığında algoritmanın performansının daha iyi olduğu ortaya

çıkmıştır. Chen ve Zhou (2018), üç çeşit komşuluk arama yöntemi kullanılmışlardır. Lider arı ve takipçi

arı arama evresinde, tekli arama modunu algoritmanın optimizasyon derinliğini artıran üç yönlü bir

arama yöntemine dönüştürülmüştür. Kâşif arı tarafından üretilen yeni gıda kaynakları için çok sayıda

komşuluk araştırması yapılması ve bir sonraki tekrarlamaya devam edilmesi, yeni gıda kaynaklarının

hayatta kalmasını ve popülasyonların çeşitliliğini arttırmıştır. Simülasyon deneylerinden, geliştirilmiş

ayrık yapay arı koloni algoritmasının büyük ölçekli zaman pencereli araç rotalama problemlerini

çözmede belirgin avantajlara sahip olduğu anlaşılmıştır. Kantawonq ve Pravesjit (2020), çalışmalarında

bulanık teknik, dağınık arama yöntemi ve SD-tabanlı seçim yöntemini yapay arı kolonisi algoritması ile

birleştirerek probleme uygulamışlardır. Karşılaştırmalı sonuçlardan algoritmanın, diğer algoritmalara

kıyasla iyi sonuçlar verdiği sonucu elde edilmiştir.

Parçacık sürü optimizasyonu, Eberhart ve Kennedy tarafından 1995 yılında ortaya atılan sürüyü

temel alan stokastik bir optimizasyon tekniğidir (Wang vd., 2018: 387). Parçacık sürü optimizasyonunda

bir çözüm, bir parçacık olarak temsil edilir ve çözümlerin oluşturduğu populasyona parçacık sürüsü

denir. Her parçacığın konum ve hız olmak üzere iki önemli özelliği vardır. Her parçacık, hızı kullanarak

yeni bir konuma hareket eder. Yeni bir konuma ulaşıldığında, her parçacığın en iyi konumu ve sürünün

en iyi konumu gerektiği şekilde güncellenir. Her parçacığın hızı daha sonra parçacığın deneyimlerine

dayanarak ayarlanır. İşlem, bir durdurma kriteri karşılanana kadar tekrarlanır.

Her parçacık rastgele bir konum ve hız ile başlatılır. Sonra her parçacık uygunluk değeri açışından

değerlendirilir. Bir uygunluk değeri her hesaplandığında, parçacığın önceki en iyi uygunluk değeri ve

tüm sürünün önceki en iyi uygunluk değeri ile karşılaştırılır ve uygun olduğunda kişisel en iyi ve küresel

en iyi pozisyonlar güncellenir. Bir durdurma kriteri karşılanmazsa, hız ve konum yeni bir sürü

oluşturmak için güncellenir (Kachitvichyanukul, 2012: 217). 1995’ten bu yana parçacık sürü

optimizasyon algoritması, küresel optimizasyon problemlerini çözmek için en umut verici optimizasyon

tekniklerinden biri olarak ortaya çıkmıştır (Pant vd., 2009: 101). Küresel optimizasyon problemlerinden

biri olan zaman pencereli araç rotalama probleminin çözümünde bu yöntemi ele alan çalışmalar

mevcuttur.

Liu vd. (2009), melez bir parçacık sürü optimizasyon algoritmasını ileri sürmüşlerdir. Yazarlar,

algoritmayı geliştirmek için hem genetik algoritmadaki çaprazlama operatörünü hem de seviye küme

teorisini kullanmışlardır. Deneysel karşılaştırma sonuçları, algoritmanın performansının, parçacık sürü

optimizasyonu, genetik algoritma ve paralel parçacık sürü optimizasyon yöntemlerinden daha üstün

olduğunu ve ayrık birleştirme problemlerini çözmek için etkili bir yaklaşım olacağını göstermiştir. Ai ve

Kachitvichyanukul (2009), parçacık sürü optimizasyon algoritmasının performansını değerlendirmek

için hesaplama süresi ve çözüm kalitesi olmak üzere iki kriter dahil etmişlerdir. Hesaplamalı

deneylerden ileri sürülen algoritmanın zaman pencereli araç rotalama problemini çözmek için etkili

sonuçlar vereceğine ulaşılmıştır. Marinakis vd. (2019), ileri sürdükleri çoklu adaptif parçacık sürü

optimizasyon algoritmasında; aç gözlü rastgele adaptif arama, adaptif kombinaoryal komşuluk topolojisi

ve parçacık sürü optimizasyon algoritması olmak üzere 3 farklı adaptif strateji kullanmışlardır.

ş ğ

Ateşböceği algoritması, neredeyse optimizasyon ve mühendislik problemleri için hızlı gelişen

evrimsel zekalardan biridir. Ateşböceği, bir biyolüminesans işlemi tarafından üretilen çoğunlukla kısa

ve ritmik flaşlar üreten bir böcektir. Yanıp sönen ışığın işlevi, ortakları (iletişimi) çekmek ya da potansiyel

avı ve avcıya karşı koruyucu bir uyarı almaktır. Dolayısıyla ışığın bu yoğunluğu ateşböceklerinin diğer

ateşböceklerine doğru hareket etmesinin faktörüdür. Işık yoğunluğu, seyircinin gözlerinden uzakta

değişmektedir. Uzaklık arttıkça ışık yoğunluğu azalmaktadır. Işık yoğunluğu aynı zamanda havanın

çevreden etkilenmesinin etkisi, böylece uzaklık arttıkça yoğunluk daha az çekici hale gelir. Algoritmanın

üç idealize kuralı aşağıdaki gibidir (Ali vd., 2014: 1732):

i. Ateşböcekleri cinsiyetten bağımsız olarak birbirlerine doğru çekilir.

ii. Ateşböceklerinin çekiciliği, ateşböceklerinin parlaklığı ile ilişkilidir, dolayısıyla daha az çekici

ateşböcekleri daha çekici ateşböceklerine doğru ilerleyecektir.

iii. Ateşböceklerinin parlaklığı objektif fonksiyonuna bağlıdır.

2007 yılında Cambridge Üniversitesinde Dr. Xin-She Yang tarafından geliştirilen bu yöntem,

parçacık sürü optimizasyonu, yapay arı koloni optimizasyonu ve bakteriyel yiyecek arama algoritmaları

gibi sürü zekasına dayanan diğer algoritmalarla birçok benzerliğe sahip olsa da, aslında hem kavram

hem uygulama açısından çok daha basittir. Ayrıca, çok verimlidir ve birçok optimizasyon problemini

çözmek için genetik algoritmalar gibi diğer geleneksel algoritmalardan daha iyi performans

gösterebilmektedir (Apostolopoulos ve Vlachos, 2011: 8-9). Örneğin; Pan vd. (2013), ateş böceği

algoritmasının temel prensiblerini ve algoritma sürecini ayrıntılı bir şekilde inceleyerek, algoritmanın

işleyişini ve çözüm basamaklarını zaman pencereli araç rotalama problemi için tasarlamışlardır.

Kıyaslama testinden ve literatürdeki diğer test örneklerinden, zaman pencereli araç rotalama için ateş

böceği algoritmasının geçerliliğini kanıtlayan iyi çıktılar elde edilmiştir. Aggarwal ve Kumar (2018),

geliştirmiş oldukları ateş böceği algoritmasında iki ateş böceği arasındaki uzaklığı Chebyshev metodunu

kullanarak hesaplamışlardır. İleri sürmüş oldukları bu metotla problem için en yakın sonuçları elde

etmişlerdir.

Yarasa algoritması, yeni sürü zeka temelli bir meta-sezgisel algoritmadır. Yang tarafından 2010

yılında geliştirilmiştir. Mikro yarasaların yüksek sesle ve değişen titreşim emisyonu ile yiyecek ararkenki

davranışlarından esinlenilmiştir (Kongkaew, 2017: 642). Yarasadan ilham alan bu yaklaşım, optimum

aramada mikro yarasaların gelişmiş gırtlak yankılarını taklit eder. Diğer yerel arama algoritmalarına

kıyasla yarasa algoritması en belirgin özelliklere sahiptir:

 Çözüm çeşitliliğini genişletmek için bir frekans ayarlama stratejisi kullanılır;

 Arama hareketlerinde arama ve sömürme faktörleri güçlü bir şekilde ilişkili olduğundan bu iki

faktör arasındaki dengeyi sağlamak için otomatik zoom kullanılır.

Yarasa algoritmasının bugüne kadar yapılan birkaç son derece başarılı uygulamaları vardır (Wang

vd., 2018: 117). Bu uygulamalar problem özelliklerine göre; çizelgeleme, tahsis, tesis düzeni tasarımı,

rotalama ve çoklu problem kombinasyonu olmak üzere beş gruba ayrılabilir (Kongkaew, 2017: 644).

Bunlar arasında araç rotalama probleminin bir uzantısı olan zaman pencereli araç rotalama problemine

yönelik yapılan üç çalışma aşağıda belirtilmiştir.

 Taha vd. (2017), ZPARP için ileri sürdükleri geniş komşuluk aramalı yarasa algoritmasıyla, geniş

komşuluk aramanın yok etme ve onarma paradigmasını kullanarak ayrık yarasa algoritmasının

performansını arttırmış ve yarasanın çözüm alanının büyük bir bölümünü keşfetmesini sağlamışlardır.

Osaba vd. (2018), yarasa algoritmasını rastgele yeniden yerleştirme operatörlerini kullanarak ZPARP’ne

uyarlamışlardır. Geliştirmiş oldukları bu yöntemle, etkili ve elverişli sonuçlar elde edilmiştir. Pratiwi vd.

(2018), yarasa algoritmasını tavlama benzetimi ile melezleştirmişlerdir. Toplam uzaklığın minimum

olmasında ileri sürmüş oldukları algoritmanın elverişli olduğu yapılan testler sonucunda ortaya

çıkmıştır.

Harmoni Arama yöntemi, müzisyenlerin harmoni doğaçlamalarının temel ilkelerinden ilham

alınarak oluşturulan bu yöntem Geem vd. (2001) tarafından önerilmiştir. Algoritma basit olmakla

beraber, arama verimliliğinin ayırt edici özelliklerine sahiptir. Harmoni arama algoritması, başlangıç

popülasyonunu harmoni vektörlerinden rastgele olacak şekilde oluşturarak harmoni hafızasında depo

eder. Hafıza çözümleri, ayar düzeltmesi ve rastgele seçim gibi yöntemler kullanılarak harmoni

hafızasındaki çözümlerden yeni harmoni oluşturulur. Sonra, aday vektör, en kötü vektör ile güncelleme

operatörü yardımıyla kıyaslanır ve aday vektör güncellenir. Bu süreç belirli bir iterasyon adedince tekrar

edilir.

Basitliği ve uygulama kolaylığı nedeniyle son yıllarda, fonksiyon optimizasyonu, mekanik yapı

tasarımı, boru ağı optimizasyonu ve veri sınıflandırma sistemlerinin optimizasyonu gibi alanlarda

başarıyla kullanılmış ve birçok optimizasyon problemleri için dikkat çekici bir algoritma haline

gelmiştir.(Akkoyunlu ve Engin, 2011: 142; Gao vd., 2015: 1). Bu optimizasyon problemlerinden olan

zaman pencereli araç rotalama problemine de uygulanmış çalışmalar mevcuttur. Bunlardan Yassen vd.

(2015), yerel arama algoritması ile melezleştirilen bir meta-harmoni algoritmasını ele almışlar ve

problemin çözümünde kullanmışlardır. Yassen vd. (2017), uyarlanabilir bir melez harmoni arama

algoritmasını tasarlamışlardır. Chen vd. (2017), değişken komşuluk arama sezgiseli ile harmoni arama

algoritmasını birleştirerek dinamik zaman pencereli araç rotalama problemine uyarlamışlardır. Maleki

vd. (2017), melez kendinden uyarlamalı küresel en iyi harmoni arama algoritmasını ele almışlardır.

Sömürü kapasitesini arttırmak için taşıma, yer değiştirme, son müşteri değişimi, or-opt, 2-opt ve çapraz

değişim operatörü olmak üzere 6 yerel arama komşuluk operatörlerini kullanılmıştır.

ğ

Kurbağa sıçrama algoritması, azami miktarda kullanılabilir gıdayı bulmak için yer bulma

arayışındayken bir grup kurbağaların memetik evrimini taklit eden bir meta-sezgisel optimizasyon

yöntemidir (Luo ve Chen, 2014: 2536). Kurbağa popülasyonu, topluluktaki kurbağaların tamamının bir

araya gelmesiyle oluşur. Popülasyondaki kurbağaların her biri problem için olası bir çözüme karşılık

gelir. Her kurbağanın uygunluk değeri algoritmada ifade edilen kısıt ve değişkenlere göre belirlenir.

Kurbağa popülasyonunun rastgele oluşturulmasıyla algoritma başlar. Rastgele oluşturulan

popülasyonun uygunluk değerleri hesaplanır ve sıralı bir şekilde gruplara ayrılır. Her bir grup

birbirinden bağımsız bir şekilde memetik evrime belirli bir iterasyon adedince tabi tutulur. İyi değerlere

sahip bireylerin etkisinin kötü bireylerden daha fazla olması bu evrimde amaçlanır. Bu nedenle memetik

evrim aşamasında seçme işlemi yapılmadan önce her kurbağaya bir şeçilme katsayısı verilir. Gruplar

kendi içlerinde sonuçları bulur ve bu sonuçlar baz alınarak popülasyonun yeni ve farklı gruplara ayrılma

işlemi gerçekleştirilir. Böylece kurbağaların sahip oldukları memetik bilgi, global seviyede paylaşılır ve

en iyi çözüme yavaş yavaş yaklaşılmaktadır (Karakoyun, 2015: 24-25).

Luo ve Chen (2014), çok depolu zaman pencereli araç rotalama problemi ve çok depolu kapasiteli

araç rotalama probleminin çözümünde çok aşamalı kurbağa sıçrama algoritmasını kullanmışlardır.

Deney sonuçları algoritma ile kısa sürede yüksek nitelikli sonuçların elde edildiğini ortaya çıkarmıştır.

Kombinatoryal optimizasyon problemlerinden ZPARP’ne yönelik bu yöntemi kullanarak çözüm

bulmayı amaçlayan bir diğer çalışma Luo vd., (2015) tarafından yapılmıştır. Problemi etkili bir şekilde

ele almak için melez bir kurbağa sıçrama algoritmasından faydalanmışlardır. Çözümlerin kalitesini

artırmak ve nüfusa daha fazla çeşitlilik getirmek için değiştirilen klon seçim prosedürü kullanılmıştır.

İleri sürülen yaklaşım, daha önce kullanılan algoritmalarla karşılaştırılmış ve algoritmanın hem

hesaplama verimliliği hem de çözüm kalitesi açısından etkili performansı gösterilmiştir.

Memetik algoritmalar, popülasyon tabanlı arama (evrimsel tekniklerde olduğu gibi) ve yerel arama

(tepe-tırmanma tekniklerinde olduğu gibi) gibi farklı algoritmik çözücülerden alınan fikirlerin sinerjistik

kombinasyonuna dayanan optimizasyon teknikleridir. “Memetik algoritmalar” ın (MA) genel değeri,

geniş bir meta-sezgisel sınıfını (yani, altta yatan bir sezgisel yöntemi yönlendirmeyi amaçlayan genel

amaçlı yöntemler) kapsayacak şekilde kullanılır. Metot bir ajan popülasyonuna dayanır ve çeşitli

problem alanlarında ve özellikle de NP-zor optimizasyon problemlerinin yaklaşık çözümü için pratik

başarısı olduğu kanıtlanmıştır. Geleneksel evrimsel hesaplama yöntemlerinden farklı olarak, Memetik

Algoritma'lar çalışılan problemle ilgili mevcut tüm bilgileri kullanmaktan doğal olarak sorumludur.

MA'ların başarısı muhtemelen dâhil ettikleri farklı arama yaklaşımlarının sinerjisinin doğrudan bir

sonucu olarak açıklanabilir (Moscato ve Cotta, 2010: 141-142).

Nagata vd. (2010), etkili bir memetik algoritmayı ileri sürmüşlerdir. Burada, çapraz kenar montajı,

zaman penceresi kısıtlaması ile başa çıkmak için özellikler dahil edilerek zaman pencereli araç rota

problemine adapte edilmiştir. Komşuluk operatörleri olarak 2-opt, or-değişim, yer değiştirme ve değişim

operatörlerinin alt komşuluklar için farklı versiyonları kullanılmıştır. Bu yaklaşımın daha etkili olduğu

yapılan testler sonucunda anlaşılmıştır. Nalepa ve Blocho (2016), coğrafi olarak dağınık bir dizi

müşteriye hizmet vermek için rota planında harcanan toplam mesafeyi en aza indirme amacına sahip

problemin çözümü için uyarlanabilir bir memetik algoritmayı sunmuşlardır. Çözüm alanının

keşfedilmesini ve kullanılmasını dengelemek için yeni bir uyarlanabilir seçim planı önerilmiştir.

Karşılaştırmalı sonuçlardan algoritmanın çok rekabetçi olduğu anlaşılmıştır.

Bakteriler yiyecek arama programı, program yürütme ilerledikçe ve gittikçe daha iyi bir uygunluğa

(daha az maliyet işlevi) yol açtıkça, programın her yinelenen adımından sonra maliyet fonksiyonunu

tahmin eden evrimsel bir algoritmadır. Optimize edilecek parametreler bakterilerin koordinatlarını

(konumunu) temsil eder. Parametreler istenen aralıkta ayrıştırılır, bu ayrık değerlerin her biri uzay

koordinatlarında bir noktayı temsil eder. Sonra her noktada bir bakteri konumlandırılır (yaratılır). Her

aşamalı adımdan sonra bakteriler yeni pozisyonlara hareket eder (yeni koordinat değerleri) ve her

pozisyonda maliyet fonksiyonu hesaplanır ve daha sonra bu hesaplanan maliyet fonksiyonu değeri ile,

bakterilerin daha fazla hareketine maliyet fonksiyonunun yönünün azaltılmasıyla karar verilir. Bu

nihayet bakterileri en yüksek uygunlukta bir pozisyona (optimizasyon parametreleri kümesi) götürür

(Sharma vd., 2012: 9).

Niu vd. (2012), doğrusal olmayan azalan bir üstel modülasyon modeli ile geliştirilmiş bakteriyel

yiyecek arama algoritmasını kullanmışlardır. Algoritmanın üstünlüğü diğer bakteriyel yiyecek arama

algoritmaları ile karşılaştırıldığında ortaya çıkmıştır. Tan vd. (2015), zamanla değişen kemotaksis adım

uzunluğu ve adaptif kapsamlı öğrenme bakteriyel yem arama optimizasyonu olarak adlandırılan

kapsamlı öğrenme stratejisi ile birlikte bakteriyel yem arama optimizasyonu algoritmasının bir

varyantını önermişlerdir. Algoritmanın araştırılması ve kullanılması arasında iyi bir denge sağlamak için

uyarlamalı, doğrusal olmayan bir şekilde azalan modülasyon modeli kullanılmıştır. Yöntem, çoklu mod

problemlerini çözmede önemli ölçüde daha iyi performans göstermiştir.

Evrim, çevreye uyum sağlama ve genetik bilgilerin sonraki nesillere aktarılması olayıdır. Darwin

(1859) doğal evrimi yönlendiren üreme, doğal seçilim ve bireylerin çeşitliliği olmak üzere üç temel ilke

belirlemiştir. Doğal evrimin bu özellikleri, biyolojik evrimi ve doğal seçilimi taklit eden geniş bir evrimsel

algoritma sınıfına giriş bulmuştur. Evrimsel algoritma (EA) terimi, doğal evrim sürecini simüle eden bir

stokastik optimizasyon yöntemleri sınıfını ifade eder. Genel olarak, bir Evrimsel Algoritma (EA), bir

seçim sürecinden geçen ve genetik operatörler tarafından manipüle edilen bir dizi çözüm adayının

muhafaza edilmesiyle karakterize edilir. Doğal evrime benzer şekilde, çözüm adaylarına birey, çözüm

adayları kümesine de popülasyon adı verilir. Her birey, problemdeki olası bir çözümü temsil eder.

Bununla birlikte, bir birey bir karar vektörü değildir, bunun yerine optimizasyon probleminin çözümünü

uygun bir yapıya, örneğin gerçek değerli bir vektöre dayalı bir karar vektörüne kodlar. Kodlanmış

çözümü (kromozom) tutan veri yapısının her bir alt bölümüne gen denir ve genellikle tek bir

parametrenin değerini kodlar. Seçim, adayların (ebeveynlerin) uygunluk değerlerine göre yeniden

birleştirme için seçildiği bir süreçtir. Burada uygunluk, çözüm uzayını keşfederken maksimize edilecek

kâr, fayda veya iyilik ölçüsünü ifade eder. Rekombinasyon (veya çaprazlama) ve mutasyon, mevcut

olanlardan arama uzayında yeni çözümler üretmeyi amaçlayan genetik operatörlerdir. Çaprazlama

operatörü, belirli sayıda çocuk (yavru) oluşturmak için belirli sayıda ebeveynden gelen bilgileri

birleştirir. Buna karşılık, mutasyon operatörü, belirli bir olasılığa (mutasyon hızı) göre ilişkili karar

vektörlerindeki (tipik olarak) küçük parçaları rastgele değiştirerek bireyleri değiştirir.

Yukarıdaki kavramlara dayalı olarak, doğal evrim yinelemeli bir hesaplama süreci ile simüle edilir.

Başlangıçta, eldeki bir problem için bir aday çözüm popülasyonu oluşturulur. Bu genellikle çözüm

uzayından rastgele örnekleme ile gerçekleştirilir. Daha sonra ebeveyn değerlendirmesi (uygunluk

ataması), seçim, rekombinasyon ve/veya mutasyondan oluşan bir döngü belirli sayıda yürütülür. Her

döngü yinelemeye bir nesil denir ve bazı yakınsama kriterleri veya koşulları karşılandığında arama

durdurulur. Bu tür kriterler, örneğin, maksimum nesil sayısına veya benzer bireylerden oluşan homojen

bir popülasyona yakınsamaya karşılık gelir.

EA’ların kökenleri 1950’lerin sonlarına kadar uzanabilir ve 1970’lerden bu yana başta genetik

algoritmalar, evrimsel programlama ve evrim stratejileri olmak üzere çeşitli evrimsel metodolojiler

önerilmiştir. Tüm bu yaklaşımlar bir dizi aday çözüm üzerinde çalışır. Ayrıca, EA’lar çok amaçlı

optimizasyon için özellikle uygun görünmektedir, çünkü tek bir simülasyon çalışmasında birden çok

pareto-optimal çözümü yakalayabilmektedirler ve rekombinasyonla çözümlerin benzerliklerinden

faydalanabilmektedirler.

Çok amaçlı optimizasyonda evrimsel algoritmaların (EA) uygulanması, çeşitli geçmişlere sahip

araştırmacılar tarafından artan ilgi görmektedir (Bhargava, 2013: 31; Braysy vd., 2004: 5-6). Bunlar

arasında Tan vd. (2006), ZPARP için özel genetik operatörler ve değişken uzunluklu kromozom temsili

ile melezleştirilen çok amaçlı evrimsel algoritmayı ele almışlardır. Bu yaklaşımın literatürde yer alan

mevcut en iyi yaklaşımlardan daha iyi sonuç verdiği yapılan testlerce anlaşılmıştır. Creput vd. (2007),

evrimsel yaklaşımda kendi kendini organize eden haritalarla probleme çözüm bulmaya çalışmışlardır.

Najera ve Bullinaria (2011), çok amaçlı evrimsel algoritmayı ZPARP’nin çözümü için geliştirmişlerdir.

Elde edilen sonuçlar geliştirilen bu yaklaşımın iyi bilinen evrimsel algoritmalardan daha iyi olduğunu

ortaya çıkarmıştır.

Yusufçuk algoritması, 2016 yılında Griffith Üniversitesi’nde Mirjalili tarafından geliştirilmiştir. Sürü

zekâsına dayanan bir meta-sezgisel algoritma olan bu teknik, doğadaki yusufçukların statik ve dinamik

davranışlarından esinlenmiştir. Arama ve sömürme, optimizasyonun iki ana aşamasıdır. Bu iki aşama,

dinamik olarak veya statik olarak yiyecek arayan veya düşmandan kaçınan yusufçuklar tarafından

modellenmiştir. Besleme, optimizasyonda statik bir sürü olarak modellenir; göç dinamik bir sürü olarak

modellenmiştir. Craig ve Hart'a göre, sürülerin üç özel davranışı vardır: ayırma, hizalama ve uyum.

Burada, ayırma kavramı, sürülerdeki bir bireyin komşusu ile statik çarpışmayı önlediği anlamına gelir.

Hizalama, ajanların komşu bireylerle eşleşme hızını ifade eder. Son olarak, uyum kavramı bireylerin

sürünün merkezine doğru eğilimlerini gösterir. Yusufçuk algoritmasındaki bu üç temel davranışa iki ek

davranış eklenir: yiyeceğe doğru hareket etmek ve düşmandan kaçınmak. Bu davranışları algoritmaya

eklemenin nedeni, her sürünün temel amacının hayatta kalmasıdır. Bu nedenle, tüm bireyler gıda

kaynaklarına doğru ilerlerken, aynı zamanda düşmandan kaçınmalıdırlar (Acı ve Gülcan, 2019: 2-3).

En son sürü tabanlı algoritmalardan olan bu yaklaşım, makine öğrenimi, görüntü işleme, kablosuz

ve ağ uygulamaları ve diğer bazı alanlarda birçok problemi optimize etmek için kullanılmıştır (Rahman

ve Rashid, 2019: 2-9). Bu optimizasyon problemlerinden olan ZPARP için yapılan çalışmadan biri Liu

vd., (2019) tarafından yapılan çalışmadır. Yusufçuk algoritmasını probleme uyarlamışlardır. Bu

uyarladıkları algoritmanın etkili olduğu yapılan simülasyon deneylerinden anlaşılmıştır. Gunawan

(2020), yusufçuk algoritmasının çözüm kalitesi açısından fil sürüsü optimizasyonundan daha iyi sonuç

verdiğini yaptığı çalışmada ispatlamıştır.

ş

Guguk kuşu arama algoritması, guguk kuşlarının doğal davranışlarından ilham alan Yang ve Deb

tarafından 2009 yılında geliştirilen sürü zeka temelli bir meta-sezgisel algoritmadır (Fister Jr. vd., 2013:

390). Guguk kuşları, kuluçka parazitleri (kuluçka asalaklığı) kuşlarıdır. Asla kendi yuvasını inşa etmez

ve yumurtalarını başka bir konakçı kuşun yuvasına koyar. Guguk kuşları en iyi bilinen bir kuluçka

parazitidir. Bazı ev sahibi kuşlar, davetsiz misafir guguk kuşu ile doğrudan bağlantı kurabilir. Ev sahibi

kuş, yumurtaları olmayan yumurtaları tanımlarsa, o yumurtaları yuvalarından uzağa fırlatır veya

yuvalarından kurtulur ve yeni bir yuva oluşturur. Bir yuvada, her yumurta bir çözümü temsil ederken,

guguk kuşu yumurtası ise yeni ve iyi bir çözümü temsil eder. Elde edilen çözüm, var olanı ve bazı

özelliklerin değişikliklerini temel alan yeni bir çözümdür. En basit formda, her yuvada birden fazla

yumurta vardır ve bunların bir tanesi bir dizi çözümü temsil eden guguk kuşu yumurtasıdır (Pentapalli

ve Varma P., 2016: 556). Guguk kuşu araması, aşağıda üç idealize edilmiş kural kullanılarak

tanımlanabilir:

 Her guguk kuşu her seferinde bir yumurta yumurtlar ve yumurtasını rastgele seçilen yuvaya bırakır;

 Yüksek kalitede yumurta içeren en iyi yuvalar gelecek nesillere taşınır;

 Mevcut ev sahibi yuvalarının sayısı sabittir ve bir guguk kuşu tarafından yumurtlanan yumurta, ev

sahibinin doğurma olasılığı pa∈[0,1] ile bulunur.

Her guguk kuşu rastgele seçilen bir yuvaya ayrılan bir zamanda tek bir yumurta bırakır. Mükemmel

kalitede yumurtaları olan optimum yuva gelecek nesillere taşınır. Ev sahibi yuvalarının sayısı sabittir ve

bir ev sahibi, varlığı ya yumurtadan atılmasına ya da ev sahibi kuş tarafından yuvayı terk etmesine sebeb

olan pa∈[0,1] olasılıklı yabancı bir yumurta bulabilir. Bir yuvadaki her bir yumurta bir çözümü ve bir

guguk kuşu yumurtası ise yeni bir çözümü temsil eder. Buradaki amaç en zayıf uygunluğa sahip çözüm

ile yeni çözümü değiştirmektir (Dash ve Mohanty, 2014: 3541-3542).

Çizelgeleme problemi, yapı mühendisliğinde tasarım optimizasyon problemleri ve global

optimizasyon problemleri gibi birçok uygulamada guguk kuşu arama algoritması kullanılmaktadır

(Pentapalli ve Varma P., 2016: 556). Ayrıca ZPARP gibi dağıtım problemlerinde de bu yaklaşımın

kullanıldığı Lei vd. (2018) tarafından yapılan bir çalışmada ispatlanmıştır. Çalışmalarında zaman

pencereli lojistik araçların yol planlamasında guguk kuşu arama algoritmasından faydalanmışlardır.

Simülasyonla yapılan deneyler sonucunda bu yöntemin bu tarz problemler için etkili olabileceği

sonucuna varılmıştır. Bir diğer çalışma ise Rezaeipanah vd. (2019) tarafından yapılmıştır. Çalışmalarında

problemin çözümü için açgözlü algoritma ile melezleştirilmiş guguk kuşu arama algoritmasını

kullanmışlardır. Karşılaştırmalı sonuçlardan algoritmanın üstün performans sergilediği ortaya çıkmıştır.

ZPARP’nin çözümünde kesin, sezgisel ve meta-sezgisel yöntemlerin kullanıldığı çalışmalar yayın

yıllarına göre Tablo 2’de listelenmiştir.

✔

✔

✔

✔

✔

✔ ✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔ ✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔ ✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔ ✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔ ✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

46

Bu bölümde, sürü zekâsının genel özellikleri, doğadaki bal arılarının yiyecek ararkenki

davranışlarına, yiyecek kaynaklarına, arıların işçi, işsiz arılar olarak gruplandırılmasına, arıların yiyecek

arama davranışlarına, sergiledikleri danslar ile yiyecek kaynakları hakkında diğer arılara bilgi

vermelerine, yapay arı kolonisinin algoritmik yapısına ve evrelerine ve zaman pencereli araç rotalama

problemi için geliştirilmiş yapay arı kolonisi algoritmasının evrelerine ve ZPARP için geliştirilen yapay

arı kolonisi algoritmasının küçük boyutlu bir örnek üzerinde, başlangıç yiyecek kaynaklarının en yakın

komşu sezgiseli ile oluşturulması ve oluşturulan bu yiyecek kaynaklarının uygunluk değerlerinin

hesaplanışı, ekleme, yer değiştirme ve alt diziyi rastgele ekleme komşuluk operatörleri ile komşu yiyecek

kaynaklarının oluşturulmasının nasıl olduğu ele alınmıştır.

Dünyada pek çok tür sürü vardır. Bunların hepsinin zekâsını aramak mümkün değildir veya zekâ

seviyeleri sürülerden sürülere değişebilmektedir. Kendi kendine organize olabilme, basit ajanlar

arasındaki yerel etkileşimler yoluyla kolektif davranışa neden olan bir sürü sisteminin kilit bir özelliğidir.

Bonabeau vd. (1999), sürü örgütündeki kendi kendine organize olmayı, dört özellik ile yorumlamıştır:

Olumlu Geribildirim: Uygun yapıların oluşturulmasını teşvik eder. Bazı karınca türlerinde veya

arılardaki danslarda iz bırakma ve takip etme gibi işe alım ve güçlendirme, olumlu geri bildirim örneği

olarak gösterilebilir. Bir arı bir nektar kaynağı bulduğunda, kovana geri döner ve nektarını bir kovan

arıya bırakır. Daha sonra ya diğer arılara yiyecek kaynağının yönünü ve mesafesini belirtmek için dans

etmeye başlar ya da bulunduğu yiyecek kaynağını terk ederek kendi başına sıradan bir takipçi olup

yiyecek kaynağında yiyecek aramaya devam eder. Koloniye yuvadan aynı mesafede iki özdeş yiyecek

kaynağı sunulursa arılar iki kaynağı simetrik olarak kullanır. Bununla birlikte, bir kaynak diğerinden

daha iyi ise, arılar daha iyi kaynaktan faydalanabilir veya daha sonra keşfedilse bile bu daha iyi kaynağa

geçebilirler. Deneysel olarak da bir arının iyi bir yiyecek kaynağı için dans etme ve zayıf bir gıda

kaynağını terk etme olasılığının yüksek olduğu gösterilmiştir. Bu basit davranış kuralları koloninin daha

iyi kaliteli kaynağını seçmesini sağlar. Seeley vd. (1991), Camazine ve Sneyd (1991), yiyecek arayıcıları

nektar kaynak kalitesine dayalı olarak farklı dans ve terk oranları ile oluşturulan olumlu bir geri bildirim

yoluyla en iyi gıda kaynağına ev sahipliği yapabilecekleri bu gözlemlere dayanan basit bir matematiksel

model ile doğrulamıştır. Şekil 7’de yiyecek arama aktivitesinin şematik bir temsili gösterilmektedir. (C1:

takipçi mi?) ve (C2: dansçı mı?) karar noktaları siyah elmaslarla gösterilmiştir (Bonabeau vd., 1999: 9).

Olumsuz Geribildirim: Olumlu geribildirimlerin dengelenmesi ve kollektif düzenin dengelenmesine

yardımcı olur. Mevcut yiyecek arayıcılarda meydana gelebilecek doygunluğu önlemek için negatif geri

besleme mekanizmasına ihtiyaç vardır.

Dalgalanmalar: Rastgele yürüyüşler, hatalar, yaratıcılık için hayati olan sürü bireyleri arasında

rastgele görev değiştirme. Rastgele, yeni çözümlerin keşfedilmesini sağladığı için ortaya çıkan yapılar

için önemlidir.

Çoklu Etkileşimler: Sürüdeki ajanlar, diğer ajanlardan gelen bilgileri kullanır; böylece bilgiler ağ

boyunca yayılır.

Bu karakteristiklere ek olarak, iş bölümü olarak adlandırılan uzman ajanlar tarafından eş zamanlı

olarak görev yapmak, zekânın oluşması için kendi kendine organize olabilmenin yanı sıra bir sürünün

önemli bir özelliğidir.

Millonas’a (1994) göre bir sürü zekâsını tanımlamak için sürünün aşağıdaki prensipleri karşılaması

gerekir:

 Sürü basit alan ve zaman hesaplamaları yapabilmelidir (yakınlık prensibi).

 Sürü, çevredeki kalite faktörlerine cevap verebilmelidir (kalite prensibi).

 Sürü, faaliyetlerini aşırı sınırlı kanallar boyunca gerçekleştirmemelidir (farklı tepki ilkesi).

 Sürü, çevrenin her dalgalanması üzerine davranış şeklini değiştirmemelidir (stabilite prensibi).

 Sürü gerektiğinde davranış modunu değiştirebilmelidir (uyarlanabilirlik ilkesi) (Karaboga vd., 2014:

24; Bonabeau vd., 1999: 10-11).

Yapay arı kolonisi algoritması, bal arılarının yiyecek arama sırasında sergilemiş oldukları

davranışlarından esinlenerek oluşturulmuştur. Doğada var olan sürülerden biri, yiyecekleri ararken

kollektif zekâ davranışını takip eden bal arısı sürüsüdür. Bu sürü, bilgileri iletme, çevreyi tanıma, bilgileri

muhafaza ederek paylaşabilir duruma getirme ve buna dayanarak kararlar alabilme gibi birçok özelliğe

sahiptir. Ortamdaki değişikliklere göre, sürü kendini günceller, görevleri dinamik olarak atar ve sosyal

öğrenme ve öğretme ile daha ileriye doğru hareket eder. Arıların bu zekice davranışı, araştırmacıları arı

sürüsünün yukarıdaki yiyecek arama davranışını taklit etmeye motive etmiştir. Gerçek bal arılarının

davranışı başlarda, yiyecek kaynakları, işçi arılar, işsiz arılar, yiyecek arama davranışı ve danslar gibi

başlıklarda aşağıda özetlenmiştir (Bansal vd., 2013: 125-126).

Yiyecek Kaynakları:

Arı, yiyecek ararken kendine uygun bir çiçek (yiyecek kaynağı) seçip, yiyecek kaynağının içerdiği

nektarın miktarı, bu nektarın çiçekten ne kadar kolay elde edebileceği, kovandan ne kadar uzakta olduğu

konusundaki bilgiyi bu seçmiş olduğu yiyecek kaynağından toplar. Arı, bu gerçekleri kolaylık ve basitlik

adına tek bir nitelik (bu belirli yiyecek kaynağı için toplam kârlılık olarak adlandırılan) olarak saklar.

İşçi Arılar:

Mevcut yiyecek kaynakları, belirli bir grup arı tarafından kullanılmaktadır. Bu arılara işçi arılar denir

ve bunların her biri ilişkili olduğu yiyecek kaynağının kârlılığını (zenginliği, kovandan uzaklığını ve

yönünü) korur.

İşsiz Arılar:

İşçi arılar, bilgilerini belli bir olasılıkla işsiz arı olarak adlandırılan başka bir grup arıyla paylaşırlar.

İşsiz arılar, işçi arılardan elde ettikleri bilgileri özetlemekten ve sömürülecek gıda kaynağını seçmekten

sorumludur. Bu işsiz arılar, gözcü ve kâşif arılar olarak ikiye ayrılır. Gözcü arılar, kovandaki işçi

arılardan bilgi toplayan arılardır ve verileri analiz ettikten sonra, kendileri için bir yiyecek kaynağı

oluştururlarken kâşif arı kovanın çevresindeki yeni besin kaynaklarını bulmaktan sorumludur. Mevcut

yiyecek kaynaklarından bazıları tükendiğinde, bu arılar kovan etrafındaki çevreyi aramaya başlar ve

yeni besin kaynaklarını rastgele bulur. Bir bal arısı sürüsü, genellikle ortalama % 50 işçi arılar, % 50 işsiz

arılar ve toplam arıların% 5 ile % 10'u kâşif arılardan oluşur.

Yiyecek Arama Davranışı:

Bal arısı sürüsünün en önemli özelliği, yiyecek arama davranışıdır. Yiyecek arama sürecinde, arı

kovandan ayrılır ve yiyecekleri aramaya başlar. Arı bir yiyecek kaynağına ulaştığında nektarı oradan

çıkarır ve midesine depolar. Nektarı; zenginlik, besin kaynağının kovandan uzaklığı gibi koşullara göre

30-120 dakikaya kadar çıkarır. Daha sonra midesinde enzimlerin salgılanmasıyla bal yapım süreci başlar

ve kovana ulaştıktan sonra boş hücrelerde nektarı boşaltır. Sonunda kovandaki bilgilerini, bir sonraki

bölümde tanımlanan çeşitli dans türleri biçiminde paylaşır.

Dans:

Kovanda yaşayan diğer arılara, besin kaynağının ne kadar bol olduğunu, kovandan ne kadar uzakta

ve hangi yönde olduğunu, işçi arı kovanın farklı bölgelerinde, dans adı verilen belirli türde adımlar

uygular. Von Frisch (1967) (1973 Nobel Ödülü sahibi) arıların dans dilini çözmüş ve bir arı dansının yön

bilgisinin, bir besin kaynağının güneşe göre konumunu gösterdiğini ve besin kaynağının mesafesinin

farklı dans türleriyle işaretlendiğini belirtmiştir. Tarpy (2009) ve Wenner ve Wells (1990), bir yiyecek

kaynağı gövdesindeki çiçek kokularının, işçi arıların yeni yiyecek kaynakları bulmalarını sağlayan ana

işaretler olduğunu savunmuşlardır.

Dans dilleri veya çiçek kokuları, yiyecek arama davranışını yerine getiren arılar arasında iletişim

olduğunu gösterir. Dans aracılığıyla, başkalarına yiyecek kaynaklarını takip edip etmemeleri gerektiğini

bildirmek ister. Dans hareketleri kovanın farklı alanlarında yapılır, böylece onunla ilişkilendirilen gıda

kaynakları hakkında daha fazla arı bilgilendirilebilir. Dans ederken diğer arılar, besin kaynağının

nektarını tatmak için antenleriyle ona dokunurlar. Besin kaynağının kârlılığına bağlı olarak, işçi arı

aşağıdaki dans formlarından birini gerçekleştirir:

 Dairesel Dans: Bu dans türü besin kaynağının yönü hakkında bilgi vermez, ancak arı bu dansı

besin kaynağının yakınına geldiğinde (yaklaşık 100 metreden fazla olmayan) kovana

yaklaştığında yapar.

 Kuyruk Dansı: Bu dans formu, diğer arılara, güneş ışığına göre besin kaynağının yönü hakkında

bilgi verir ve kaynak kovandan uzaksa, işçi arılar bu dans formunu seçer. Dansın hızı, besin

kaynağının kovandan olan uzaklığı ile orantılıdır. Bu dans Şekil 8’de gösterilmiştir.

 Titreme Dansı: Bir arının nektarı boşaltması daha uzun zaman aldıysa titremeye başlar ve

başkalarını bilgilendirmeden önce çok zaman aldığı için gıda kaynağının mevcut kârlılığını

(zenginliğini) bilmediğini belirtir.

Gerçek bal arılarının minimal yiyecek seçimi modelinde olduğu gibi yapay arı kolonisi

algoritmasında yapay arı kolonisi üç grup arı içerir. Bunlar; belirli yiyecek kaynakları ile ilişkilendirilmiş

işçi arılar, kovan içindeki işçi arıların dansını izleyerek yiyecek seçen gözcü arılar ve yiyecek kaynaklarını

rastgele arayan kâşif arılardır. İşçi veya gözcü arıların sayısı yiyecek kaynaklarının sayısına eşittir.

Yiyecek kaynağı tükenen işçi arılardan biri kâşif arısı olur ve yeni besin kaynağını rastgele arar. Hem

gözcüler hem de kâşifler, işsiz arılar olarak adlandırılırlar. Başlangıçta tüm yiyecek kaynağı konumları

kâşif arılar tarafından keşfedilir. Sonrasında yiyecek kaynaklarının nektarı, işçi ve gözcü arılar tarafından

sömürülür ve bu sürekli sömürü eninde sonunda yiyecek kaynaklarının tükenmesine sebep olur. Daha

sonra kaynağı tükenmiş işçi arı bir kez daha başka yiyecek kaynaklarını aramak için kâşif arı olur. Başka

bir deyişle, yiyecek kaynağı tükenmiş olan işçi arı, kâşif arı haline gelir. Yapay arı kolonisinde, bir yiyecek

kaynağının konumu, problem için olası bir çözümü temsil eder ve bir yiyecek kaynağının nektar miktarı,

ilgili çözümün kalitesine (uygunluğuna) karşılık gelir. Temel yapay arı kolonisinde, işçi arıların sayısı

yiyecek kaynaklarının (çözümlerin) sayısına eşittir. Yani, her işçi arı sadece ve sadece bir yiyecek kaynağı

ile ilişkilendirilir (Karaboga vd., 2014: 25-26).

Yapay arı kolonisi algoritması da diğer sürü tabanlı algoritmalara benzer şekilde tekrar eden bir

süreçtir. Algoritmada, arama alanının farklı alanlarını keşfetmeyi sağlayan çeşitlilik süreci ve önceki

deneyimlerin sömürülmesini sağlayan seçim süreci olmak üzere yapay arı kolonisi popülasyonunun

evrimini türeten iki temel süreç vardır. Bununla birlikte popülasyonun yerel bir optimuma

yakınsamaması durumu olsa da algoritmanın zaman zaman küresel optimuma doğru ilerlemeyi

bırakabileceği gösterilmiştir (Bansal vd., 2013: 127). Yapay arı kolonisi algoritmasının temel arama süreci

Şekil 9’da gösterilmiştir. Burada şeklin 𝑎) ile gösterilen kısmı arama sürecinin başlangıç durumu 𝑏) ile

gösterilen kısmı ise arama sürecinin son durumudur (Mogaka vd., 2016: 17)

Yapay arı kolonisi algoritmasında süreç; başlangıç evresi, işçi arı evresi, gözcü arı evresi ve kâşif arı

evresi olmak üzere dört aşamalı bir döngüyü gerektirir. Bu evrelerin her biri aşağıda ifade edilmiştir

(Bansal vd., 2013: 127-130).

ş

Başlangıçta, yapay arı kolonisi 𝑆𝑁 çözümlerinin düzgün dağılmış bir popülasyonunu oluşturur.

Burada, her 𝑥𝑖(𝑖 = 1,2,… , 𝑆𝑁) çözümü, 𝐷 −boyutlu bir vektördür. Ayrıca, 𝐷; optimizasyon

problemindeki değişkenlerin sayısını ve 𝑥𝑖 ise popülasyondaki 𝑖. yiyecek kaynağını temsil eder. Her bir

yiyecek kaynağı aşağıdaki (3.1) denklemindeki gibi oluşturulur:

 𝑥𝑖
𝑗
= 𝑥𝑚𝑖𝑛

𝑗
+ 𝑟𝑎𝑛𝑑(0,1)(𝑥𝑚𝑎𝑥

𝑗
− 𝑥𝑚𝑖𝑛

𝑗
), ∀𝑗 = 1,2,… , 𝐷 (3.1)

Burada, 𝑥𝑚𝑖𝑛
𝑗
 𝑣𝑒 𝑥𝑚𝑎𝑥

𝑗
 sırasıyla 𝑗. yöndeki 𝑥𝑖’nin alt ve üst sınırlarıdır.

İş

Bu evrede, işçi arılar, bireysel deneyimlerinin bilgisine ve yeni çözümün uygunluk değerine (nektar

miktarı) dayanarak mevcut çözümü değiştirirler. Yeni yiyecek kaynağının uygunluk değeri, eski yiyecek

kaynağının uygunluk değerinden yüksekse arı konumunu eski yiyecek kaynağından yeni yiyecek

kaynağına getirerek günceller ve eskisini atar. 𝑖. adayın 𝑗. boyutu için konum güncelleme denklemi (3.2)

denkleminde gösterilmiştir:

 𝑣𝑖𝑗 = 𝑥𝑖𝑗 +𝜑𝑖𝑗(𝑥𝑖𝑗 − 𝑥𝑘𝑗) (3.2)

Burada, 𝜑𝑖𝑗(𝑥𝑖𝑗 − 𝑥𝑘𝑗), hareket büyüklüğü, 𝑘 ∈ {1,2,… , 𝑆𝑁}, 𝑗 ∈ {1,2,… ,𝐷} keyfi seçilmiş iki indekstir.

𝑘, 𝑖’den farklı olmalı ki, hareket büyüklüğü bazı önemli katkıya sahip olsun. 𝜑𝑖𝑗, [−1,1] aralığındaki keyfi

bir sayıdır. İşçi arı evresinde konum güncelleme süreci Şekil 10’da gösterilmiştir. Burada 𝑥𝑖, bir arının

mevcut konumunu temsil eder. Vurgulanan kutu, rastgele seçilen 𝑗 yönünü temsil eder. 𝑥𝑘, rastgele

seçilen bir arıdır. Bu adımda, keyfi bir 𝑘 ≠ 𝑖 arının 𝑗 yönü 𝑖. arının 𝑗 yönünden çıkarılır. Bu fark, keyfi bir

sayı olan 𝜑𝑖𝑗 ∈ [−1,1]’den çarpılır. Son olarak bu sayı, yeni yiyecek konumu 𝑣𝑖𝑗’nin 𝑗. boyutunu elde

etmek için 𝑥𝑖’nin 𝑗. boyutuna eklenir. Şekildeki dikey vektör 𝑣𝑖𝑗 tarafından temsil edilir ve 𝑥𝑖’nin

komşuluğunda oluşturulur. Diğer tüm boyutları, 𝑥𝑖 ile aynıdır. Arama uzayı 2 −boyutlu olarak

düşünülürse bu yeni yiyecek kaynağı 𝑣𝑖𝑗 için olası konumlar Şekil 11’deki gibi olur.

𝑥𝑖𝑗

İşçi arı evresinin tamamlanmasından sonra gözcü arı evresine başlanır. Bu evrede, işçi arıların tümü,

güncel çözümlerin (yiyecek kaynakları) uygunluk (nektar) değerlerini ve yiyecek kaynakların konum

bilgisini kovanda bekleyen gözcü arılarla paylaşırlar. Gözcü arılar, mevcut bilgileri analiz eder ve

uygunluğu ile ilgili olan 𝑝𝑖 olasılıklı bir çözümü seçerler. 𝑝𝑖 olasılığı aşağıdaki ifade kullanılarak

hesaplanabilir:

 𝑝𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖
𝑆𝑁
𝑖=1

 (3.3)

Burada 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖, 𝑖. çözümün uygunluk değeridir. İşçi arı evresinde olduğu gibi, gözcü arı

hafızasındaki konumunda bir değişiklik yapar ve aday kaynağın uygunluğunu kontrol eder. Eğer

uygunluk öncekinden yüksekse, arı yeni konumu hafızaya alır ve eskisini unutur.

ş

Bir yiyecek kaynağının konumu, önceden tespit edilmiş bir döngü sayısı içinde güncellenmezse

yiyecek kaynağının terkedildiği varsayılır ve kâşif arı evresi başlatılır. Bu evrede, terk edilmiş yiyecek

kaynağı ile ilişkili arı, kâşif arı haline gelir ve yiyecek kaynağı, arama alanındaki rastgele seçilen yiyecek

kaynağı ile değiştirilir. Yapay arı kolonisinde önceden belirlenmiş döngü sayısı, vazgeçme limiti olarak

adlandırılan önemli bir kontrol parametresidir.

Xi1 Xi2 .. Xi,j-1 Xij Xi,j+1 . Xid

Xi

-
x +

Xk1 Xk2 .. Xk,j-1 Xkj Xk,j+1 . Xkd

Xij

Xkj

(Xij-Xkj)

fij

fij(Xij-Xkj)

Xij

Vi1=Xi1

Vi2=Xi2
.
.
.

Vi,j-1=Xi,j-1

Vij

Vi,j+1=Xi,j+1
.
.
.

Vid=Xid

Vij

Vi

Xk

vij

Vij
Vij

Vij

x2

x1

xij

Kabul edelim ki terkedilen kaynak 𝑥𝑖 olsun. Bu durumda, kâşif arı bu yiyecek kaynağını yeni yiyecek

kaynağı olan 𝑥𝑖 ile aşağıdaki gibi yer değiştirir:

 𝑥𝑖
𝑗
= 𝑥𝑚𝑖𝑛

𝑗
+ 𝑟𝑎𝑛𝑑[0,1](𝑥𝑚𝑎𝑥

𝑗
− 𝑥𝑚𝑖𝑛

𝑗
), ∀𝑗 = 1,2,… ,𝐷 (3.4)

Burada, 𝑥𝑚𝑖𝑛
𝑗
 𝑣𝑒 𝑥𝑚𝑎𝑥

𝑗
 sırasıyla 𝑥𝑖’nin 𝑗. yönündeki alt ve üst sınırlarıdır.

Şekil 12’de yapay arı kolonisinde arıların yiyecek ararkenki davranışları gösterilmiştir. Şekil 12’den

de anlaşılacağı üzere, her aşamada arıların sadece yarısının yiyecek kaynaklarını araştırdığı ve toplanan

bilgileri çeşitli danslar yaparak kovanda kalan diğer arılara ilettiği açıktır. Besin kaynağı tükenen arı,

kâşif arı olur ve rastgele yeni bir çözüm arar.

Yapay arı kolonisinde arama sürecinin üç önemli kontrol parametresi vardır:

 Yiyecek kaynaklarının sayısı, 𝑺𝑵 (işçi veya gözcü arıların sayısına eşit)

 Tükenen yiyecek kaynağının tespitinde kullanılan önemli bir kontrol parametresi olan limit değeri

 Yapay arı kolonisi algoritmasının döngüsünün sonlanmasında durdurma kriteri olarak kullanılan

maksimum iterasyon (yineleme) sayısı

Bu parametreler algoritmanın başlangıç evresinde belirlenir. Daha sonra işçi arı, gözcü arı ve kâşif

arı evresi olarak adlandırılan bu üç evre yinelemeli olarak durdurma kriteri sağlanana kadar devam eder.

Yapay arı kolonisi algoritmasının tekrar eden bu döngüsü aşağıda ifade edilmiştir (Gothania vd., 2014:

64-66).

 Yiyecek aramaya başlar

 İşçi/gözcü arılar nektar

aramak için kovan

dışına hareket ederler

 Arılar bilgi iletişimi kurarlar

 Arılar bilgilerini paylaşmak

için çeşitli dans formları

uygularlar

 Bazı bilgilerle kovana

geri döner

 Arılar bilgilerini diğer

arılarla paylaşmak için

kovana geri dönerler

 Cezbedici yiyecek

kaynağı bulur

 Arılar çiçeklerden

nektar toplar

O
pp

s!
 Y

iy
ec

ek

ka
yn

ağ
ım

tü
ke

nd
i

Yapay arı kolonisi algoritması aslında dört farklı seçim süreci kullanır (Karaboga ve Basturk, 2007:

463):

 Denklem (3.3)’te ifade edildiği gibi gelecek vaat eden bölgeleri keşfetmek için gözcü arıların

kullandığı bir küresel seçim süreci

 Yerel bilgilere bağlı olarak yapay işçi ve gözcü arılar tarafından bir bölgede gerçekleştirilen

bir yerel seçim süreci (gerçek arılar söz konusu olduğunda, bu bilgi çiçeklerin rengini, şeklini

ve kokusunu içerir) (arılar, nektar kaynağının türünü doğru yere gelinceye kadar

tanımlayamayacaklar ve Denklem (3.2)'de tanımlandığı gibi, kaynağın etrafındaki bir komşu

yiyecek kaynağını belirlemek için kokularına göre orada yetişen kaynaklar arasında ayrım

yapamayacaklardır.

 Komşu kaynağın nektar miktarının mevcut olandan daha iyi olması durumunda arıların

mevcut olanı unutması ve komşu kaynağı hafızaya alması için tüm arılar tarafından

gerçekleştirilen açgözlü seçim süreci adı verilen yerel bir seçim süreci. Aksi takdirde, arı

mevcut olanı hafızada tutar.

 Kâşif arılar tarafından gerçekleştirilen rastgele bir seçim süreci

Çalışmanın bu bölümünde ZPARP’nin çözümü için geliştirilmiş yapay arı kolonisi algoritmasının

evrelerine değinilmiştir. Başlangıç evresinde yiyecek kaynaklarının en yakın komşu algoritması ile

oluşturulmasına, oluşturulan yiyecek kaynaklarının uygunluk fonksiyonlarının nasıl hesaplanması

gerektiğine, işçi ve gözcü arı evrelerinde komşu yiyecek kaynaklarının oluşturulmasında ekleme, yer

değiştirme ve alt diziyi rastgele ekleme operatörlerinin kullanılmasına ve kâşif arı evresine ve bu evrede

yiyecek kaynaklarının rastgele ve en yakın komşu sezgiseli olmak üzere iki şekilde oluşturulmasına yer

verilmiştir. Optimum çözümlere ulaşmak için başlangıç ve kâşif arı evresindeki yiyecek kaynaklarının

(çözümlerinin) oluşturulmasında en yakın komşu sezgiseli kullanılmıştır. Burada ele alınan en yakın

komşu sezgiseli ile yiyecek kaynakları oluşturulurken her bir yiyecek kaynağındaki her bir rotanın

depodan sonraki ilk müşterisi rastgele diğer müşteriler EYK yöntemine göre seçilerek oluşturulmuştur.

EYK yöntemine göre eklenecek müşterilerin maliyet ve süre değerleri hesaplanarak bu değerlerden

büyük olanı bu müşterilerin seçim değerleri olarak dikkate alınmıştır. Seçim değeri küçük olan müşteri

rotaya eklenmiştir. Her bir müşterinin birbirlerine ve depoya olan uzaklıkları Öklid uzaklığı ile

hesaplanmış, oluşturulan yiyecek kaynağının uygunluk değeri ise bu yiyecek kaynağındaki (çözüm

satırındaki) müşterilerin birbirlerine ve depoya olan uzaklıkları toplamı olarak hesaplanmıştır. Diğer

taraftan işçi ve gözcü arı evresinde komşu yiyecek kaynaklarının (yeni çözümlerin) oluşturulmasında

rota geliştirici sezgiseller olarak bilinen ekleme, yer değiştirme ve alt diziyi rastgele ekleme operatörleri

kullanılmıştır. İşçi arı evresinde rastgele seçilen yiyecek kaynağı üzerinde önceden oluşturulmuş rastgele

sayıya göre eşit olasılıkla ekleme, yer değiştirme ve alt diziyi rastgele ekleme operatörü uygulanarak

komşu yiyecek kaynakları oluşturulurken; gözcü arı evresinde ise komşu yiyecek kaynakları gözcü arı

evresine kadar ki oluşturulan yiyecek kaynaklarından seçilen en iyi yiyecek kaynağı üzerinde bu üç

operatör önceden oluşturulmuş rastgele bir sayıya göre eşit olasılıkla uygulanarak oluşturulmuştur.

ş

İlk olarak yiyecek sayısı kadar en yakın komşu sezgiseli ile oluşturulan rotaların yer aldığı yiyecek

kaynakları oluşturulur. Temel yapay arı kolonisi algoritmasında belirtildiği gibi burada da yiyecek

kaynaklarının sayısı işçi arı sayısına eşit olup, yiyecek kaynaklarında yer alan her bir yiyecek satırı bir

çözümü temsil etmektedir. Bu yiyecek kaynaklarına bağlı olarak işçi arı sayısı ve gözcü arı sayısı

belirlenir. Maksimum iterasyon sayısı, ilk populasyon aday bulma deneme sayısı, işçi/gözcü arı aşaması

deneme sayısı ve alt diziyi rastgele ekleme iç deneme sayısı tespit edilir. Kontrol amaçlı sayaç değişkeni

oluşturulur.

ZPARP için en yakın komşu algoritması Bölüm 3.1.4.1.1.’de ifade edilmiştir.

ş

En yakın komşu sezgiseli, bir rotadaki en son müşterinin ardına bu müşteriye mesafe açısından en

yakın olan müşterinin eklenmesidir. Tabi burada problemin zaman pencereli araç rotalama problemi

olması sebebiyle sadece mesafe açısından değil aynı zamanda zaman penceresi kısıtını da göz önünde

bulundurarak çözümler oluşturulacaktır. Bu sebepten dolayı, rotaya eklenen son müşterinin müşteri

listesindeki gidilmeyen müşterilere uzaklıkları ile o müşterinin servise hazır olma süresi karşılaştırılır.

Tabi burada karşılaştırmalar bir birim uzaklığın bir birim zaman diliminde gidildiği varsayımı ile yapılır.

Servise hazır olma süresi ve uzaklık değerlerinden büyük olanı o müşterinin seçim değeri olarak tespit

edilir. Başlangıç noktası (depo) ile bir rota oluşturulur. Tüm müşteriler arasından minimum seçim

değerine sahip müşteri ilk rotanın ilk müşterisi olarak seçilerek listeden kaldırılır ve rotaya ilave edilir.

Araç kapasitesinin doluluğunu hesaplanır. Rotadaki müşterilerin toplam talebi araç kapasitesine eşit

olana kadar müşteriler aynı şekilde rotaya alınmaya devam ettirilir. Talepleri araç kapasitesini geçtiği

durumda aracın depoya dönmesi için rota sonuna depo eklenir ve yeni bir rota oluşturulur. Bu süreç

müşteri listesinde müşteri kalmayana kadar tekrar ettirilir. (Göçken vd., 2018: 778-779). Bu çalışmada da

her bir yiyecek kaynağı en yakın komşu sezgiseli ile oluşturulmuştur. Tabi burada her bir rotanın ilk

müşterisi yukarıda anlatılandan farklı olarak rastgele seçilip rotaya eklenmiştir. Rotaların geri kalan

müşterileri ise en yakın komşu yöntemine göre seçilip rotaya ilave edilmiştir. Problemimiz için kullanılan

en yakın komşu algoritmasının aşamaları ayrıntılı biçimde aşağıda ifade edilmiştir. Başlangıç yiyecek

kaynaklarını oluşturma aşamasında, populasyondaki her bir yiyecek kaynağı için yiyecek kaynağı tüm

müşterileri içeren bir çözüm olana kadar aşağıdaki adımlar takip edilerek bireye rotalar eklenmiştir.

Adım 1: Depo (0) rotaya eklenir. Gidilmeyen müşteriler bulunur.

Adım 2: Gidilmeyen müşteriler arasından rastgele bir müşteri seçilir. Seçilen müşteri rotaya eklenir (bu

müşteri M2 olarak anılacaktır).

Adım 3: M2, gidilmeyenler listesinden çıkarılır.

Adım 4: Gidilmeyenler arasında cezalı olmayanların her biri için aşağıdaki adımlar tekrar edilir.

i. Gidilmeyen bir müşteri seçilir (Mx).

ii. Rotaya seçilen müşteri eklenir ve rotanın Mesafe ve Süre değeri hesaplanır. Mesafe değeri

depodan başlanarak rotadaki son müşteriye ulaşana kadar gidilmesi gereken uzaklık. Süre

değeri depodan başlanarak rotadaki son müşteriye ulaşıp müşteriden yükün alınarak (servis

süresi dâhil) ayrılma anına kadar geçen süredir.

iii. Maliyet ve Süre değerinin en büyüğü seçilerek Mx’in maliyeti bulunur.

Adım 5: Gidilmeyenler arasında en düşük maliyet değerine sahip müşteri seçilir (Mbest).

Adım 6: Mbest rotaya eklenir.

Adım 7: Rotada kapalı müşteri sorunu olup olmadığı kontrol edilir. Rotada kapalı müşteri sorunu varsa

Mbest rotadan çıkarılır ve cezalı olarak belirlenir. Rotanın depoya dönülerek sonlandırılması gerekip-

gerekmediği kontrol edilir. Depoya dönülecekse, rotaya Depo eklenerek rota kapatılır. Depoya

dönülmeyecekse Adım-4’e dönülür.

Adım 8: Rotada kapalı müşteri sorunu yoksa Mbest gidilmeyenler listesinden çıkarılır.

Adım 9: Gidilmeyenlerin cezaları silinir.

Adım 10: Aracın dolu olup olmadığı kontrol edilir. Araç yük olarak dolu ise (kapasitesi aşılmışsa) Mbest

rotadan çıkarılır ve Depo rotaya eklenerek rota kapatılır.

Adım 11: Gidilmeyen müşteri varsa Adım-4’e dönülür.

Adım 12: Gidilmeyen müşteri kalmamışsa rota sonlandırılır.

Her yiyecek kaynağı (çözüm satırları) için uygunluk fonksiyonu, oluşturulan yiyecek

kaynaklarındaki (çözüm satırlarındaki) müşterilerin birbirlerine olan uzaklıkları ile müşterilerin depoya

olan uzaklıklarının toplamı şeklinde ifade edilmiştir. En iyi çözüm, bütün iterasyonlar içerisinde en kısa

uzaklığa sahip olan çözümdür. Bu durumda, çözüm yöntemlerinin uygunluk fonksiyonu Denklem 3.5’te

belirtilmiştir.

 𝑓𝑖 =∑𝑑𝑗

𝑘

𝑗=1

 (3.5)

𝑓𝑖: 𝑖 yiyecek kaynağının uygunluk değeri

𝑑𝑗: oluşturulan yiyecek kaynağının toplam yol uzunluğu (j = 1,2,3,… , k)

Her bir yiyecek kaynağına ait uygunluk değerleri Denklem (3.5)’e göre hesaplanır.

İş

Her bir yiyecek kaynağı en yakın komşu sezgiseli ile oluşturulup uygunluk değerleri hesaplandıktan

sonra işçi arılar devreye girer. İşçi arılar rastgele bir yiyecek kaynağı seçerek bu çözüm satırındaki rotaları

manüple ederler. Daha önce de belirtildiği üzere, işçi arıların sayısı yiyecek kaynaklarının sayısına eşittir.

Dolayısıyla, her bir işçi arı popülasyondaki her bir çözüme karşılık gelir. Temel yapay arı kolonisi

algoritmasına göre her işçi arı mevcut kaynağın komşuluğunda bir yiyecek kaynağı üretir. Bir çalışmada

bu yiyecek kaynaklarının üretiminde yer değiştirme, ekleme ve ters çevirme operatörleri önceden

oluşturulmuş rastgele bir sayıya göre eşit olasılıkla kullanılmıştır (Özdemir, 2013: 88). Biz de burada işçi

arıların komşu yiyecek kaynağı oluşturmaları için yer değiştirme, ekleme ve alt dizileri rastgele ekleme

komşuluk operatörlerini önceden oluşturulmuş rastgele bir sayıya göre eşit olasılıkla kullanacağız. İşçi

arılar rastgele bir besin seçip besin satırında yer alan rotaların yerlerini değiştirerek komşu yiyecek

kaynaklarını bahsedilen bu üç operatörü kullanarak oluştururlar. Oluşturulan yiyecek kaynaklarının

(komşu çözümlerin) nektar miktarı (uygunluk değeri) problem için tanımlanan amaç fonksiyon değerine

göre hesaplanır. Elde edilen çözüm değeri mevcut çözüm değerinden daha iyi ise hafızaya alınır, aksi

takdirde deneme sayacı bir arttırılır.

İşçi arı evresinden sonra gözcü arı evresi başlar. Bu evrede gözcü arılar oluşturulan her bir çözüm

değerinin uygunluk değerine (amaç fonksiyonuna göre) göre bir yiyecek satırı seçer ve işçi arı evresinde

yapıldığı gibi bu besin satırındaki rotaların yerini yer değiştirme, ekleme ve alt diziyi rastgele ekleme

operatörleri ile değiştirerek yeni çözüm oluştururlar. Amaç minimizasyon olması sebebiyle önceden

tespit edilmiş rastgele sayıya bağlı olarak en düşük amaç değerine sahip olan besinde karar kılınır. Elde

edilen yeni çözüm değeri mevcut çözümden daha iyi ise hafızaya alınır, aksi takdirde sayaç değişkeni

bir arttırılır.

Yukarıda bahsi geçen komşuluk operatörleri aşağıda açıklanmıştır.

ş

Komşuluk operatörlerinden rastgele yer değiştirme operatörü; çözüm vektöründe 𝑖 ≠ 𝑗 olmak üzere

𝑖 ve 𝑗 konumlarını rastgele seçer ve 𝑖 ve 𝑗 konumunda bulunan müşterilerin yerlerini değiştirir. Örneğin

𝑖 = 3 ve 𝑗 = 7 olmak üzere verilen bir çözüm vektörünün bu konumlarda bulunan müşterilerin yer

değiştirilmesi Şekil 13’teki gibidir (Szeto vd., 2011: 128-129):

Diğer taraftan rastgele ekleme operatörü, 𝑖 ≠ 𝑗 olmak üzere 𝑖 ve 𝑗 konumlarını rastgele seçerek,

müşteriyi 𝑖 konumundan 𝑗 konumuna taşıma işleminden oluşur. Örneğin 5 müşterisini 7 konumundan

3 konumuna yeniden konumlandırma işlemi Şekil 14’te verilmiştir:

Alt dizileri rastgele ekleme operatörü, ekleme operatörünün bir uzantısıdır. 𝑖 konumundan

başlayarak rastgele uzunluktaki bir depo ve müşteri dizisinin 𝑗 konumuna yeniden

konumlandırılmasıdır. Bu operatörün bir örneği Şekil 15’te verilmiştir:

ş

Gözcü arı evresinden sonra kâşif arı evresi başlar. Kâşif arı evresinde, ilk adımda üretilmiş olan

yiyecek kaynakları yeniden oluşturulur. Bu yiyecek kaynakları ilk aşamadan farklı olarak rastgele ve en

yakın komşu algoritması oluşturulur. Yiyecek kaynağındaki her bir çözüm satırının uygunluk değerleri

hesaplanır. Elde edilen bu değerler hafızadaki en iyi sonuçlarla karşılaştırılır. Bu çözüm değerleri mevcut

çözüm değerlerinden daha iyi ise hafızaya alınıp, ilgili yiyecek kaynağındaki çözüm satırı ile yer

değiştirir. Aksi halde, sayaç değişkeni bir arttırılır.

Yukarıda detayları anlatılan algoritmanın adımları aşağıda belirtilmiştir:

Adım 1: Kullanıcının program arayüzünden belirlediği değerler ile “PopulasyonBoyutu, İşçi Arı Sayısı,

Gözcü Arı Sayısı, Maksimum İterasyon Sayısı, Maksimum Aday Deneme Sayısı, İşçi Arı Deneme Sayısı,

Alt Dizi Ekleme Deneme Sayısı, Kâşif Arı Rastgele-EnYakın” değerleri belirlenir. Kâşif arı sayısı 1 olarak

alınmıştır.

Adım 2: “En Yakın Komşu” yöntemi ile aşağıdaki adımlar gerçekleştirilerek ilk popülasyon (yiyecek

kaynakları) oluşturulur.

Adım 2.1: Depo (0) rotaya eklenir. Gidilmeyen müşteriler bulunur.

Adım 2.2: Gidilmeyen müşteriler arasından rastgele bir müşteri seçilir. Seçilen müşteri rotaya

eklenir (bu müşteri M2 olarak anılacaktır).

Adım 2.3: M2, gidilmeyenler listesinden çıkarılır.

Adım 2.4: denemeSayisi = 0 olarak belirlenir.

Adım 2.5: “denemeSayisi > maksimum aday deneme sayısı” şartı gerçekleşirse depoya dönülerek

rota sonlandırılır.

Adım 2.6: Gidilmeyenler arasında cezalı olmayanların her biri için aşağıdaki adımlar tekrar edilir.

Adım 2.6.1: Gidilmeyen bir müşteri seçilir (Mi).

Adım 2.6.2: Rotaya seçilen müşteri eklenir ve rotanın Mesafe ve Süre değeri hesaplanır.

Mesafe değeri depodan başlanarak rotadaki son müşteriye ulaşana kadar gidilmesi

gereken uzaklık. Süre değeri depodan başlanarak rotadaki son müşteriye ulaşıp

müşteriden yükün alınarak (servis süresi dâhil) ayrılma anına kadar geçen süredir.

Adım 2.6.3: Maliyet ve Süre değerinin en büyüğü seçilerek Mi’nin maliyeti bulunur.

Adım 2.7: Gidilmeyenler arasında en düşük maliyet değerine sahip müşteri seçilir (Mbest).

Adım 2.8: Mbest rotaya eklenir.

Adım 2.9: Rotada kapalı müşteri sorunu olup olmadığı kontrol edilir. Rotada kapalı müşteri sorunu

varsa Mbest rotadan çıkarılır ve cezalı olarak belirlenir. Rotanın depoya dönülerek sonlandırılması

gerekip-gerekmediği kontrol edilir. Depoya dönülecekse, rotaya Depo eklenerek rota kapatılır.

Depoya dönülmeyecekse Adım-2.6’ya dönülür.

Adım 2.10: Rotada kapalı müşteri sorunu yoksa, Mbest gidilmeyenler listesinden çıkarılır.

Adım 2.11: Gidilmeyenlerin cezaları silinir.

Adım 2.12: Aracın dolu olup olmadığı kontrol edilir. Araç yük olarak dolu ise (kapasitesi aşılmışsa)

Mbestrotadan çıkarılır ve depo rotaya eklenerek rota kapatılır.

Adım 2.13: Gidilmeyen müşteri varsa Adım-2.6’ya dönülür.

Adım 2.14: Gidilmeyen müşteri kalmamışsa rota sonlandırılır.

Adım 3: İlk popülasyon oluşturulduktan sonra iterasyon = 1 değer ataması ile başlanarak

makIterasyonSayisi değerine ulaşana kadar aşağıdaki adımlar gerçekleştirilir.

Adım 3.1: İterasyonun “İşçi Arı” evresi için aşağıdaki adımlar gerçekleştirilir.

Adım 3.1.1: İşçi Arı Sayısı kadar aşağıdaki adımlar tekrar edilir

Adım 3.1.1.1: İşçi Arı Deneme Sayısı kadar aşağıdaki adımlar tekrar edilir

Adım 3.1.1.1.1: Popülasyondan rastgele bir çözüm seçilir

Adım 3.1.1.1.2: İşlem seçim = 𝑅𝑎𝑛𝑑(0,1] aralığında rastgele bir değer üretilir

Adım 3.1.1.1.3: İşlem seçim değeri 0 < 𝑟 ≤
1

3
 aralığında ise “Ekleme Operatörü”

gerçekleştirilir.

Adım 3.1.1.1.4: İşlem seçim değeri
1

3
< 𝑟 ≤

2

3
 aralığında ise “Yer Değiştirme Operatörü”

gerçekleştirilir.

Adım 3.1.1.1.5: İşlem seçim değeri
2

3
< 𝑟 ≤ 1 aralığında ise “Alt Dizi Ekleme Operatörü”

gerçekleştirilir.

Adım 3.1.1.1.6: İşlem sonucu elde edilen aday çözüm Adım 3.1.1.1.1’deki (üzerinde

operatör çalışmadan önceki) çözümden daha iyi ise popülasyondaki ilgili çözüm ile yer

değiştirilir.

Adım 3.2: İterasyonun “Gözcü Arı” evresi için aşağıdaki adımlar gerçekleştirilir.

Adım 3.2.1: Gözcü Arı Sayısı kadar aşağıdaki adımlar tekrar edilir.

Adım 3.2.1.1: Gözcü Arı Deneme Sayısı kadar aşağıdaki adımlar tekrar edilir.

Adım 3.2.1.1.1. Popülasyonun en iyi çözümü seçilir, Bbest.

Adım 3.2.1.1.2: İşlem Seçim= 𝑅𝑎𝑛𝑑(0,1] aralığında rastgele bir 𝑟 değeri üretilir.

Adım 3.2.1.1.3: İşlem seçim değeri 0 < 𝑟 ≤
1

3
 aralığında ise “Ekleme Operatörü”

gerçekleştirilir.

Adım 3.2.1.1.4: İşlem seçim değeri
1

3
< 𝑟 ≤

2

3
 aralığında ise “Yer Değiştirme Operatörü”

gerçekleştirilir.

Adım 3.2.1.1.5: İşlem seçim değeri
2

3
< 𝑟 ≤ 1 aralığında ise “Alt Dizi Ekleme Operatörü”

gerçekleştirilir.

Adım 3.2.1.1.6: İşlem sonucu elde edilen aday çözüm Adım 3.2.1.1.1’deki (üzerinde

operatör çalışmadan önceki) çözümden daha iyi ise popülasyondaki ilgili çözüm ile yer

değiştirilir.

Adım 3.3: İterasyonun “Kâşif Arı” evresi için aşağıdaki adımlar gerçekleştirilir

Adım 3.3.1: Kâşif Arı Rastgele-EnYakın Komşu değerinin seçimine göre Rastgele veya En Yakın

Komşu yöntemi ile Aday Popülasyon oluşturulur.

Adım 3.3.2: Aday popülasyon ile algoritmanın ana popülasyon birleştirilerek çözümler uygunluk

değerine göre sıralanır ve en iyi popülasyon boyutu adet birey yeni ana popülasyon olarak

belirlenir.

Adım 4: Popülasyonun en iyi yiyecek kaynağı algoritmanın nihai sonucunu barındıran çözüm olarak

belirlenir.

Bölüm 3.1.4.’te anlatılanların daha kapsamlı anlaşılabilmesi açısından 10 müşteri ve bu müşterilerin

her birine ait 𝑋, 𝑌 koordinatı, servis süresi, talep miktarı, açılış zamanı ve kapanış zamanı bilgileri

aşağıdaki tabloda verilmiştir. Bu bilgiler doğrultusunda 10 araç ve her bir aracın kapasitesi 70 adet olacak

şekilde problemin çözümü anlatılacaktır. Müşteriler ile ilgili bilgiler Tablo 3’te ifade edilmiştir. En yakın

komşu sezgiseli kullanılarak oluşturulmuş olan başlangıç çözümlerden biri Şekil 16’da gösterilmiştir.

Başlangıç çözümünde oluşturulan rotalarda yer alan “0” (sıfır) ile depo ifade edilmektedir.

𝑿 𝒀

Müşterilerin depoya ve birbirlerine olan uzaklığın hesaplanmasında öklidyen uzaklık kullanılmıştır.

Söz konusu uzaklıklar Tablo 4’te verilmiştir.

Örneğin depo ile 2 numaralı müşterinin birbirine olan uzaklığı şu şekilde hesaplanacaktır:

𝑑(𝐷𝑒𝑝𝑜,𝑀üş𝑡𝑒𝑟𝑖 2) = √(𝑥0 − 𝑥2)2 + (𝑦0 − 𝑦2)2

𝑑(𝐷𝑒𝑝𝑜,𝑀üş𝑡𝑒𝑟𝑖 2) = √(40 − 45)2 + (50 − 70)2

 = √425

 ≅ 20,62

𝑌𝐾1:

EYK ile oluşturulan 𝑌𝐾1’de rota 1’in nasıl oluşturulduğuna bakalım.

En yakın komşu sezgiseli ile oluşturulmuş başlangıç çözümde 1’inci araç hareket ettirilir ve bu araca

ait bilgiler şu şekildedir: Başlangıç noktası depo (0) ile bir rota oluşturulur, kullanılan kapasite miktarı

ve şimdiki zamanı 0’dır. Müşteri listesinden 4 nolu müşteri rastgele seçilir ve bu müşterinin herhangi bir

araca tahsis edilmemiş olmasından dolayı kısıtların sağlanıp sağlanmadığı sırasıyla kontrol edilir. Söz

konusu müşteri 1. aracın rotasında olursa, müşterinin talebini karşılamak için aracın taşıması gereken

yük miktarı 10 adet olacaktır ve bu miktar aracın kapasitesi 70’dan küçüktür, yani ilk kısıt sağlanmıştır.

Diğer taraftan araç bulunduğu depodan bu müşteriye müşterinin kapanış zamanından önce

varabilmelidir. Depo ve müşteri 4 arasındaki mesafe 18,11 uzaklık birimi ve süre olarak alındığında ise

18,11 zaman birimine karşılık gelecektir. Yani araç müşteriye ulaştığında şimdiki zamanı 18,11 olacaktır,

bu da müşterinin kapanış zamanı olan 782 zaman biriminden öncedir, ikinci kısıt da sağlanmaktadır.

Fakat araç talebinin karşılanacağı müşterinin açılış zamanına kadar beklemek durumundadır. Böylece

müşteriye olan teslimat en erken 727 zaman biriminde başlayacaktır. Son olarak deponun son kapanış

zamanı kısıtının sağlanması gerekir. Eğer müşteri aracın son müşterisi ise araç teslimat yaptıktan sonra

depoya dönecek olduğundan bu işlem deponun kapanış zamanından önce yapılmalıdır. 4 nolu

müşteriye teslimat 727 zaman biriminde olacaktır, 90 zaman birim teslimat süresinden sonra 817 zaman

biriminde depoya geri dönmek üzere yola çıkacaktır. Aralarındaki uzaklık simetrik olduğundan dönüşte

de 18,11 zaman birimlik mesafe olacağından ve araç depoya dönecekse 835,11 zaman biriminde depoda

olacaktır ki bu da deponun kapanış zamanı olan 1236 zaman biriminden öncedir. Son kısıt da böylece

sağlanmış oldu. Dolayısıyla birinci aracın rotasında depodan sonraki tahsis edilen ilk müşteri 4 no’lu

müşteri olmuş oldu. Mevcut konumu 4 nolu müşteri olan aracın kullanılan kapasitesi 10 adet ve şimdiki

zamanı 817 zaman birimi olacaktır.

Bir sonraki müşterinin sorgulanmasında depoya dönüş süresi dâhil edilmeyecektir. Aracın

rotasındaki ikinci sıraya uygunluğu kontrol edilecektir. Müşteri 4 ise bir araca atanmış olarak müşteri

listesinden kaldırılacaktır. 4 nolu müşterinin zaman kısıtı ve aracın kapasite kısıtı göz önünde

bulundurularak, bir sonraki müşterinin seçiminde rotanın mesafe değeri ve süre değeri hesaplanacak ve

bu değerlerden büyük olanı bir sonraki müşterinin seçim değeri(maliyet değeri) olacaktır. Seçim

değeri(maliyet değeri) en küçük olan müşteri rotaya eklenir. Rotanın kapalı müşteri sorununun olup

olmadığına bakılır. Rotada kapalı müşteri sorunu varsa müşteri rotadan çıkartılır ve cezalı olarak

belirlenir. Müşteri listesindeki 4 nolu müşteriden sonraki gidilmeyen 1, 2, 3, 5, 6, 7, 8, 9 ve 10 nolu

müşteriler için rotanın mesafe ve süre değeri aşağıdaki gibi hesaplanır. Minimum maliyete sahip müşteri

rotaya eklenir.

0 →⏟
18,11

4⏟
[727,782]

→⏟
7,00

10⏟
[357,410]

↔ {
𝑚𝑑 = 25,11
𝑠𝑑 = 914

→ 𝑚𝑎𝑙𝑖𝑦𝑒𝑡 𝑑𝑒ğ𝑒𝑟𝑖 = 𝑚𝑎𝑥{25,11; 914} = 914

0 →⏟
18,11

4⏟
[727,782]

→⏟
4,47

9⏟
[534,605]

↔ {
𝑚𝑑 = 22,58
𝑠𝑑 = 911,47

→ 𝑚𝑎𝑙𝑖𝑦𝑒𝑡 𝑑𝑒ğ𝑒𝑟𝑖 = 𝑚𝑎𝑥{22,58; 911,47} = 911,47

0 →⏟
18,11

4⏟
[727,782]

→⏟
4,00

8⏟
[255,324]

↔ {
𝑚𝑑 = 22,11
𝑠𝑑 = 911

→ 𝑚𝑎𝑙𝑖𝑦𝑒𝑡 𝑑𝑒ğ𝑒𝑟𝑖 = 𝑚𝑎𝑥{22,11; 911} = 911

0 →⏟
18,11

4⏟
[727,782]

→⏟
2,83

7⏟
[170,225]

↔ {
𝑚𝑑 = 20,94
𝑠𝑑 = 909,83

→ 𝑚𝑎𝑙𝑖𝑦𝑒𝑡 𝑑𝑒ğ𝑒𝑟𝑖 = 𝑚𝑎𝑥{20,94; 909,83} = 909,83

0 →⏟
18,11

4⏟
[727,782]

→⏟
2,24

6⏟
[621,702]

↔ {
𝑚𝑑 = 30,35
𝑠𝑑 = 909,24

→ 𝑚𝑎𝑙𝑖𝑦𝑒𝑡 𝑑𝑒ğ𝑒𝑟𝑖 = 𝑚𝑎𝑥{20,35; 909,24} = 909,24

0 →⏟
18,11

4⏟
[727,782]

→⏟
3,00

5⏟
[15,67]

↔ {
𝑚𝑑 = 21,11
𝑠𝑑 = 910

→ 𝑚𝑎𝑙𝑖𝑦𝑒𝑡 𝑑𝑒ğ𝑒𝑟𝑖 = 𝑚𝑎𝑥{21,11; 910} = 910

0 →⏟
18,11

4⏟
[727,782]

→⏟
2,00

3⏟
[65,146]

↔ {
𝑚𝑑 = 20,11
𝑠𝑑 = 909

→ 𝑚𝑎𝑙𝑖𝑦𝑒𝑡 𝑑𝑒ğ𝑒𝑟𝑖 = 𝑚𝑎𝑥{20,11; 909} = 909

0 →⏟
18,11

4⏟
[727,782]

→⏟
3,61

2⏟
[825,870]

↔ {
𝑚𝑑 = 21,72
𝑠𝑑 = 915

→ 𝑚𝑎𝑙𝑖𝑦𝑒𝑡 𝑑𝑒ğ𝑒𝑟𝑖 = 𝑚𝑎𝑥{21,72; 915} = 915

0 →⏟
18,11

4⏟
[727,782]

→⏟
3,00

1⏟
[912,967]

↔ {
𝑚𝑑 = 21,11
𝑠𝑑 = 1002

→ 𝑚𝑎𝑙𝑖𝑦𝑒𝑡 𝑑𝑒ğ𝑒𝑟𝑖 = 𝑚𝑎𝑥{21,11; 1002} = 1002

Yapılan hesaplamalar sonrasında müşterilerin maliyet değerleri küçükten büyüğe doğru aşağıdaki

gibi sıralanmıştır.

𝑀3 < 𝑀6 < 𝑀7 < 𝑀5 < 𝑀8 < 𝑀9 < 𝑀10 < 𝑀2 < 𝑀1

Burada minimum maliyet değerine sahip olan 3 nolu müşteri rotaya eklenir. Ancak rotanın kapalı

müşteri sorunu olduğundan dolayı 3 nolu müşteri rotadan çıkartılır ve cezalı olarak belirlenir. 3 nolu

müşteriden sonraki en küçük maliyet değerine sahip olan müşteriler sırasıyla 6, 7, 5, 8, 9, 10 nolu

müşteriler olup, bu müşterilerde sırasıyla rotaya eklenmiş ve bu işlemler sırasında yine rotanın kapalı

müşteri sorunu ile karşılaşıldığından seçilen her bir müşteri rotadan çıkartılmış ve cezalı olarak tespit

edilmiştir.

Müşteri listesinde kalan 1 ve 2 nolu müşterilerin maliyet değerleri sırasıyla 1002 ve 915 birim zaman

olarak hesaplanmıştır. Burada seçim (maliyet) değeri küçük olan müşteri 2 nolu müşteri olduğundan 4

nolu müşteriden sonraki müşteri 2 nolu müşteridir. Kısıtlara sırasıyla bakıldığında aracın kapasite kısıtı

sağlanmaktadır. Araç 2 nolu müşteriye geldiğinde 3.61 birim zaman geçecek olduğundan aracın yeni

zamanı 820,61 birim zamandır ki bu, müşterinin zaman penceresi olan (825,870)’i geçmemiştir.

Dolayısıyla zaman penceresi kısıtı da sağlanmıştır. 2 nolu müşterinin açılış zamanı 825 birim olduğu için

araç bu zamana kadar bekleyecektir. Bu müşterinin servise başlama zamanı 825 birim olup, 90 birimlik

teslimat süresinden sonra aracın şimdiki zaman birimi 915 ve aracın toplam kapasitesi 40 adet olacaktır.

Dolayısıyla kısıtlar sağlandığından aracın rotasındaki ikinci müşteri 2 no’lu müşteri olarak listeden

silinerek rotaya eklenecektir. 2 nolu müşterinin zaman kısıtı göz önünde bulundurularak en yakın komşu

sezgiseli ile rotaya eklenecek bir sonraki müşteri 1 nolu müşteridir.

0 →⏟
18,11

4⏟
[727,782]

→⏟
3,61

2⏟
[825,870]

→⏟
2,00

1⏟
[912,967]

↔ {
𝑚𝑑 = 23,72
𝑠𝑑 = 1007

→ 𝑚𝑎𝑙𝑖𝑦𝑒𝑡 𝑑𝑒ğ𝑒𝑟𝑖 = 1007

Araç 2 nolu müşteriden 1 nolu müşteriye gittiğinde 2,00 birim zaman geçecek ve yeni zaman 917

birim olacaktır. Aracın şimdiki zaman birimi 1 nolu müşterinin (912, 967) zaman aralığında olduğu için

müşterinin talebi karşılanacaktır. 90 birimlik teslimat süresinden sonra aracın şimdiki zaman birimi 1007

ve aracın mevcut kullanılan kapasitesi 60 adet olduğundan, aracın 2 nolu müşteriden sonraki rotası 1

nolu müşteri olmuş oldu. 1 nolu müşteri de böylece müşteri listesinden silinmiş oldu. Listede kalan 5, 3,

7, 8, 10, 9, 6 numaralı müşteriler sırasıyla kapasite ve zaman penceresi kısıtlarını sağlamadıklarından

dolayı ilk aracın rotasındaki ilgili sıraya atanamamışlardır. Sonuç olarak araç 1’in rotasında sırasıyla 4,

2, 1 nolu müşteriler yer almış olup, araç depodan sırasıyla müşteri 4, müşteri 2, müşteri 1’e oradan da

tekrar depoya dönecektir.

0 →⏟
18,11

4⏟
[727,782]

→⏟
3,61

2⏟
[825,870]

→⏟
2,00

1⏟
[912,967]

→⏟
18,68

0

5, 3, 7, 8, 10, 9, 6 numaralı müşteriler henüz bir rotaya atanmamış olduklarından sıradaki araçlara

problemin kısıtlarını sağlayacak şekilde rotaların ilk müşterisi rastgele sonraki müşteriler en yakın

komşu yöntemi ile seçilerek, 1. aracın rotasında yapılan işlemlere benzer şekilde tahsis edilirler. Söz

konusu araçların başlangıç noktaları depodur ve mevcut kullanılan kapasiteleri ve şimdiki zamanları

0’dır.

Bu örnek için 3 araç aktif olarak kullanılmış ve 10 müşterinin bu üç araca tahsis edilmesi sonrasında

3 rota oluşturulmuştur ve rotalar Şekil 17’de gösterilmiştir. Oluşturulan rotalar ve toplam mesafe şu

şekildedir:

Araç 1 (Rota 1): 𝐷𝑒𝑝𝑜 (0) → 4 → 2 → 1 → 𝐷𝑒𝑝𝑜 (0)

Araç 2 (Rota 2): 𝐷𝑒𝑝𝑜 (0) → 3 → 7 → 8 → 10 → 9 → 𝐷𝑒𝑝𝑜 (0)

Araç 3 (Rota 3): 𝐷𝑒𝑝𝑜 (0) → 5 → 6 → 𝐷𝑒𝑝𝑜 (0)

𝑓1 = 𝑇𝑜𝑝𝑙𝑎𝑚 𝑀𝑒𝑠𝑎𝑓𝑒 = 𝑑(𝐷𝑒𝑝𝑜,𝑀üş𝑡𝑒𝑟𝑖 4) + 𝑑(𝑀üş𝑡𝑒𝑟𝑖 4,𝑀üş𝑡𝑒𝑟𝑖 2)

 +𝑑(𝑀üş𝑡𝑒𝑟𝑖 2,𝑀üş𝑡𝑒𝑟𝑖 1) + 𝑑(𝑀üş𝑡𝑒𝑟𝑖 1,𝐷𝑒𝑝𝑜)

 +𝑑(𝐷𝑒𝑝𝑜,𝑀üş𝑡𝑒𝑟𝑖 3) + 𝑑(𝑀üş𝑡𝑒𝑟𝑖 3,𝑀üş𝑡𝑒𝑟𝑖 7)

 +𝑑(𝑀üş𝑡𝑒𝑟𝑖 7,𝑀üş𝑡𝑒𝑟𝑖 8) + 𝑑(𝑀üş𝑡𝑒𝑟𝑖 8,𝑀üş𝑡𝑒𝑟𝑖 10)

 +𝑑(𝑀üş𝑡𝑒𝑟𝑖 10,𝑀üş𝑡𝑒𝑟𝑖 9) + 𝑑(𝑀üş𝑡𝑒𝑟𝑖 9, 𝐷𝑒𝑝𝑜)

 +𝑑(𝐷𝑒𝑝𝑜,𝑀üş𝑡𝑒𝑟𝑖 5) + 𝑑(𝑀üş𝑡𝑒𝑟𝑖 5,𝑀üş𝑡𝑒𝑟𝑖 6)

 +𝑑(𝑀üş𝑡𝑒𝑟𝑖 6, 𝐷𝑒𝑝𝑜)

 𝑓1 = 18,11 + 3,61 + 2,00 + 18,68 + 16,12 + 2,00 + 2,83 + 3,61 + 5 + 20,10 + 15,13 + 4,47 + 19,00 =

130,66

Başlangıç yiyecek kaynaklarından birisi yukarıda belirtildiği gibi en yakın komşu sezgiseli ile

oluşturulmuş ve bu yiyecek kaynağının uygunluk değeri problemin amaç fonksiyonuna göre

hesaplanmıştır. Oluşturulan başlangıç yiyecek kaynağında (çözüm) 3 araç aktif olarak kullanılmış ve 10

müşteri 3 araca tahsis edilmiştir. Böylelikle 3 rota oluşturulmuştur. Diğer iki yiyecek kaynağı da EYK ile

𝑌𝐾1’e benzer şekilde oluşturulmuş ve uygunluk değerleri amaç fonksiyonuna göre hesaplanmıştır. Bu

yiyecek kaynakları ve uygunluk değerleri aşağıda ifade edilmiştir.

𝑌𝐾2:

𝑓2:

𝑌𝐾3:

𝑓3:

En yakın komşu algoritması sonrası oluşturulan yiyecek kaynakları

𝑌𝐾1: 0 4 2 1 0 3 7 8 10 9 0 5 6 0 → 𝑓1 = 130,66, Araç Sayısı = 3

𝑌𝐾2: 0 1 0 2 0 5 3 7 8 10 0 4 0 9 6 0 → 𝑓2 = 197,49, Araç Sayısı = 5

𝑌𝐾3: 0 5 3 7 8 10 0 9 6 4 2 0 1 0 → 𝑓3 = 127,50, Araç Sayısı = 3

1. İşçi arı 1. Deneme çalışıyor

Seçilen yiyecek kaynağı 𝑌𝐾2 olsun. İşlem seçim değeri 𝑟 = 0,25 olsun. Ekleme operatörü çalışıyor.

Rastgele seçilen rota 1 den 1 nolu müşteri zaman ve kapasite kısıtını sağlayacak şekilde 2 nolu rotadaki

2 nolu müşterinin arkasına eklenir. Yeni yiyecek kaynağı ve bu yiyecek kaynağına ait uygunluk değeri

aşağıdaki gibidir:

𝑅𝑜𝑡𝑎 1: 0 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
18,68

1⏞
10

⏟
[912,967]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
18,68

0; 𝑅𝑜𝑡𝑎 2: 0 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
20,62

2⏞
30

⏟
[825,870]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
20,62

0

Depo (0)

Müşteri 3

Müşteri 7

Müşteri 8

Müşteri 10

ARAÇ 2 (ROTA 2)

Müşteri 1

Müşteri 2

Müşteri 4

ARAÇ 1 (ROTA 1)

Müşteri 6

Müşteri 5

Müşteri 9

ARAÇ 3 (ROTA 3)

𝑌𝐾2
1: 0 2 1 0 5 3 7 8 10 0 4 0 9 6 0 → 𝑓2

1 = 160,19, Araç Sayısı = 4

Burada, 𝑓2
1 < 𝑓2 olduğundan 𝑌𝐾2’nin yerine 𝑌𝐾2

1 geçerek yiyecek kaynağı güncellenir.

𝑌𝐾1: 0 4 2 1 0 3 7 8 10 9 0 5 6 0 → 𝑓1 = 130,66, Araç Sayısı = 3

𝑌𝐾2
1: 0 2 1 0 5 3 7 8 10 0 4 0 9 6 0 → 𝑓2 = 160,19, Araç Sayısı = 4

𝑌𝐾3: 0 5 3 7 8 10 0 9 6 4 2 0 1 0 → 𝑓3 = 127,50, Araç Sayısı = 3

2. İşçi arı 1. Deneme çalışıyor.

Seçilen yiyecek kaynağı 𝑌𝐾2
1 ve işlem seçim değeri 𝑟 = 0,70 olsun. Alt diziyi rastgele ekleme

operatörü çalışıyor.

𝑌𝐾2
1:

Bu yiyecek satırında bir depo ve müşterilerden oluşan dizi problemin kısıtlarını sağlayacak şekilde

4⏞
10

⏟
[727,782]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
18,11

0

olarak rastgele seçilsin. Seçilen bu dizi 4. rotaya zaman ve kapasite kısıtlarını sağlayacak şekilde 6 nolu

müşteriden sonraki konuma yerleştirilir.

 0 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
20,10

9⏞
10

⏟
[534,605]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,24

6⏞
20

⏟
[621,702]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,24

4⏞
10

⏟
[727,782]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
18,11

0 0

Uygulanan bu alt diziyi rastgele ekleme operatörü sonrası oluşturulan yeni çözüm satırı;

𝑌𝐾2
11 : 0 2 1 0 5 3 7 8 10 0 9 6 4 0 → 𝑓2

11 = 125,32, Araç Sayısı = 3

olarak elde edilmiştir. 𝑓2
11 < 𝑓2

1 olduğundan yiyecek kaynağı 𝑌𝐾2
11 olarak güncellenmiştir.

Yiyecek Kaynakları (Seçilen yiyecek kaynağı iyileştirildi, popülasyon güncellendi)

𝑌𝐾1: 0 4 2 1 0 3 7 8 10 9 0 5 6 0 → 𝑓1 = 130,66, Araç Sayısı = 3

𝑌𝐾2
11 : 0 2 1 0 5 3 7 8 10 0 9 6 4 0 → 𝑓2

11 = 125,32, Araç Sayısı = 3

𝑌𝐾3: 0 5 3 7 8 10 0 9 6 4 2 0 1 0 → 𝑓3 = 127,50 Araç Sayısı = 3

3. İşçi arı 1. Deneme çalışıyor.

Seçilen yiyecek kaynağı 𝑌𝐾1 ve işlem seçim değeri 𝑟 = 0,50 olsun. Yer değiştirme operatörü çalışıyor.

𝑌𝐾1:

Yiyecek kaynağında rastgele seçilen 2. rotadaki 3 nolu müşteri ile 3. rotadaki 5 nolu ilgili rotalardan

çıkarılır ve yer değiştirerek rotalara eklenir. Buradaki çıkarma ve ekleme işlemleri rotalardaki araç

kapasitesi, müşterilerin ve deponun zaman penceresi kısıtları göz önüne alınarak yapılır. Tüm bu

işlemler sonucunda oluşturulan yiyecek kaynağı, bu kaynağa ilişkin uygunluk değeri ve araç sayısı;

𝑅𝑜𝑡𝑎 2: 0 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
16,12

3⏞
10

⏟
[65,146]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,00

7⏞
20

⏟
[170,225]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,83

8⏞
20

⏟
[255,324]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
3,61

10⏞
10

⏟
[357,410]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
5

9⏞
10

⏟
[534,605]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
20,10

0

𝑅𝑜𝑡𝑎 3: 0 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
15,13

5⏞
10

⏟
[15,67]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
4,47

6⏞
20

⏟
[621,702]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
19,00

0

𝑌𝐾1
1: 0 4 2 1 0 5 7 8 10 9 0 3 6 0 → 𝑓1

1 = 128,8, Araç Sayısı = 3

olarak elde edilmiştir. 𝑓1
1 < 𝑓1 olduğundan yeni yiyecek kaynağı 𝑌𝐾1

1 bir önceki yiyecek kaynağının

yerini almıştır.

İşçi Arı Evresi Sonrası Yiyecek Kaynakları (Seçilen yiyecek kaynağı iyileştirildi, popülasyon güncellendi)

𝑌𝐾1
1: 0 4 2 1 0 5 7 8 10 9 0 3 6 0 → 𝑓1

1 = 128,8, Araç Sayısı = 3

𝑌𝐾2
11 : 0 2 1 0 5 3 7 8 10 0 9 6 4 0 → 𝑓2

11 = 125,32, Araç Sayısı = 3

𝑌𝐾3: 0 5 3 7 8 10 0 9 6 4 2 0 1 0 → 𝑓3 = 127,50, Araç Sayısı = 3

1. Gözcü Arı 1. Deneme çalışıyor.

Seçilen en iyi yiyecek kaynağı en düşük amaç fonksiyonuna sahip 𝑌𝐾2
11 ve işlem seçim değeri 𝑟 =

0,24 olsun. Ekleme operatörü çalışıyor.

𝑌𝐾2
11:

Bu yiyecek kaynağında 2 nolu müşteri zaman ve kapasite kısıtını sağlayacak şekilde birinci rotadan

rastgele seçilerek çıkartılır. 2 nolu müşteri çözüm satırında yer alan bu ve diğer rotalardaki müşterilerin

zaman kısıtlarını ve her bir aracın kapasite kısıtını sağlayacak şekilde rastgele üçüncü rotaya 4 nolu

müşteriden sonra eklenerek yeni çözüm satırı

2⏞
30

⏟
[825,870]

↔ 0 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
20,10

9⏞
10

⏟
[534,605]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,24

6⏞
20

⏟
[621,702]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,24

4⏞
10

⏟
[727,782]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
3,61

2⏞
30

⏟
[825,870]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
20,62

0

𝑌𝐾2
111 : 0 1 0 5 3 7 8 10 0 9 6 4 2 0 → 𝑓2

111 = 127,50 Araç Sayısı = 3

şeklinde elde edilir. Burada, 𝑓2
11 < 𝑓2

111 olduğundan ekleme operatörü ile oluşturulan çözüm bir önceki

çözümden iyi olmadığından dolayı yeni çözüm eski çözüm ile yer değiştiremez.

2.Gözcü arı 1. Deneme çalışıyor.

Seçilen en iyi yiyecek kaynağı en düşük amaç fonksiyonuna sahip 𝑌𝐾2
11 ve işlem seçim değeri 𝑟 =

0,44 olsun. Yer değiştirme operatörü çalışıyor.

𝑌𝐾2
11:

Yiyecek kaynağında rastgele seçilen 3. rotadaki 9 nolu müşteri ile 2. rotadaki 10 nolu ilgili rotalardan

çıkarılır ve yer değiştirerek rotalara eklenir. Buradaki çıkarma ve ekleme işlemleri rotalardaki araç

kapasitesi, müşterilerin ve deponun zaman penceresi kısıtları göz önüne alınarak yapılır. Tüm bu

işlemler sonucunda yeni çözüm satırı

0 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
15,13

5⏞
10

⏟
[15,67]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
1,00

3⏞
10

⏟
[65,146]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,00

7⏞
20

⏟
[170,225]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,83

8⏞
20

⏟
[255,324]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
3,61

10⏞
10

⏟
[357,410]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
16,76

0

0 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
20,10

9⏞
10

⏟
[534,605]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,24

6⏞
20

⏟
[621,702]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,24

4⏞
10

⏟
[727,782]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
18,11

 0

𝑌𝐾2
112 : 0 2 1 0 5 3 7 8 9 0 10 6 4 0 → 𝑓2

112 = 127,30 Araç Sayısı = 3

olarak bulunur. Burada, 𝑓2
11 < 𝑓2

112 olduğundan yer değiştirme operatörü ile oluşturulan çözüm bir

önceki çözümden iyi olmadığından dolayı hafızaya alınmaz.

3. Gözcü arı 1. Deneme çalışıyor

Seçilen en iyi yiyecek kaynağı en düşük amaç fonksiyonuna sahip 𝑌𝐾2
11 ve işlem seçim değeri 𝑟 =

0,83 olsun. Alt diziyi rastgele ekleme operatörü çalışıyor.

𝑌𝐾2
11:

Bu yiyecek satırında bir depo ve müşterilerden oluşan dizi problemin kısıtlarını sağlayacak şekilde

olarak rastgele seçilsin. Seçilen bu dizi 3. rotaya zaman ve kapasite kısıtlarını sağlayacak şekilde 6 nolu

müşteriden sonraki konuma yerleştirilir. Yeni yiyecek kaynağı

0 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
20,10

9⏞
10

⏟
[534,605]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,24

6⏞
20

⏟
[621,702]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
5,10

2⏞
30

⏟
[825,870]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,00

1⏞
10

⏟
[912,967]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
18,68

0

𝑌𝐾2
113 : 0 5 3 7 8 10 0 9 6 2 1 0 4 0 → 𝑓2

113 = 125,67, Araç Sayısı = 3

şeklinde olur. Burada, 𝑓2
11 < 𝑓2

113 olduğundan alt diziyi rastgele ekleme operatörü ile oluşturulan çözüm

bir önceki çözümden daha iyi olmadığından dolayı yeni çözüm eski çözüm ile yer değiştiremez.

Gözcü Arı Evre Sonrası Yiyecek Kaynakları

𝑌𝐾1
1: 0 4 2 1 0 5 7 8 10 9 0 3 6 0 → 𝑓1

1 = 128,8, Araç Sayısı = 3

𝑌𝐾2
11 : 0 2 1 0 5 3 7 8 10 0 9 6 4 0 → 𝑓2

11 = 125,32, Araç Sayısı = 3

𝑌𝐾3: 0 5 3 7 8 10 0 9 6 4 2 0 1 0 → 𝑓3 = 127,50, Araç Sayısı = 3

 Kâşif Arı Evresi

Kâşif arı evresinde yiyecek kaynakları başlangıç evresindeki yiyecek kaynaklarının sayısına eşit

olacak şekilde rastgele ve en yakın komşu algoritması ile ayrı ayrı ele alınarak oluşturulacaktır. Başlangıç

yiyecek kaynağı evresinde EYK ile yiyecek kaynaklarının nasıl oluşturulduğu belirtildiğinden bu evrede

yiyecek kaynaklarının rastgele bir şekilde oluşturulması ele alınacaktır.

Durum 1: Kâşif arı evresindeki yiyecek kaynaklarının rastgele oluşturulması

𝑅𝑌𝐾1:

Rastgele oluşturulan Yiyecek kaynağı 1 de rota 1’in nasıl oluşturulduğuna bakalım.

0 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
16,00

7⏞
20

⏟
[170,225]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
4,47

9⏞
10

⏟
[534,605]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
4,47

4⏞
10

⏟
[727,782]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
3,00

1⏞
10

⏟
[912,967]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
18,68

0

Rastgele oluşturulmuş başlangıç çözümde 1’inci araç hareket ettirilir ve bu araca ait bilgiler şu

şekildedir: Başlangıç noktası depo (0) ile bir rota oluşturulur, kullanılan kapasite miktarı ve şimdiki

zamanı 0’dır. Müşteri listesinden rastgele seçilmiş 7 no’lu müşteriye bakılır, söz konusu müşteri herhangi

bir araca atanmadığından kısıtların sağlanıp sağlanmadığına bakılır. Eğer müşteri bu aracın rotasında

yer alırsa, aracın taşıması gereken yük miktarı 20 adet olacaktır ve bu miktar aracın kapasitesi 70’dan

küçüktür, yani ilk kısıt sağlanmıştır.

Araç depodan bu müşteriye müşterinin kapanış zamanından önce varabilmelidir. Depo ve müşteri

7 arasındaki uzaklık 16,00 uzaklık birimidir ve süre olarak alındığında ise 16,00 zaman birimine karşılık

gelecektir. Yani araç müşteriye vardığında şimdiki zamanı 16,00 olacaktır, bu da müşterinin kapanış

zamanı olan 225 zaman biriminden öncedir, ikinci kısıt da yerine getirilmiştir. Fakat araç teslimatın

gerçekleşebilmesi için müşterinin açılış zamanına kadar beklemek zorundadır. Bu durumda teslimat en

erken 170 zaman biriminde başlayacaktır. Üçüncü ve son kısıt deponun son kapanış zamanı kısıtıdır,

eğer müşteri bu araca tahsis edilen son müşteri ise araç müşterinin talebini yerine getirdikten sonra

depoya geri gidecek olduğundan bu işlem deponun kapanış zamanından önce gerçekleşmelidir. Bu

müşteriye teslimat 170 zaman biriminde olacaktır, 90 zaman birim teslimat süresinden sonra 260 zaman

biriminde depoya gitmek üzere yola çıkacaktır. Aralarındaki uzaklık simetrik olduğundan dönüşte de

16,00 zaman birimlik mesafe olacağından ve araç depoya dönecekse 276 zaman biriminde depoda

olacaktır ki bu da deponun kapanış zamanı olan 1236 zaman biriminden öncedir. Son kısıt da böylece

sağlanmış oldu. Dolayısıyla birinci aracın rotasında depodan sonraki tahsis edilen ilk müşteri 7 no’lu

müşteri olmuş oldu. Mevcut konumu 7 nolu müşteri olan aracın, kullanılan kapasitesi 20 adet ve şimdiki

zamanı 260 zaman birimi olacaktır.

Bir sonraki müşteri sorgulanırken depoya gidiş süresi ilave edilmeyecektir. Müşterinin rotadaki

ikinci sıraya uygunluğu kontrol edilecektir. Müşteri 7 ise bir araca atanmış olarak müşteri listesinden

kaldırılacaktır. Bir sonraki sırada 9 numaralı müşteri bulunmaktadır ve herhangi bir aracın rotasına

tahsis edilmemiştir. Kısıtlara sırasıyla bakıldığında aracın kapasite kısıtı sağlanmaktadır. Aracın şimdiki

zamanı 260, müşterinin zaman penceresi olan (534,605)’i geçmemiştir. Dolayısıyla zaman penceresi kısıtı

da sağlanmıştır. Birinci araç 7 numaralı müşteriden 9 numaralı müşteriye gittiğinde 4,47 birim zaman

geçecek ve yeni zaman 264,47 birim olacaktır. 9 nolu müşterinin açılış zamanı 534 birim olduğu için araç

bu zamana kadar bekleyecektir. Bu müşterinin servise başlama zamanı 534 birim olup, 90 birimlik

teslimat süresinden sonra aracın şimdiki zaman birimi 624 ve aracın toplam kapasitesi 30 adet olacaktır.

Dolayısıyla kısıtlar sağlandığından dolayı aracın rotasındaki ikinci müşteri 9 no’lu müşteri olarak

listeden silinerek rotaya eklenecektir.

Araç 9 nolu müşteriden 4 nolu müşteriye gittiğinde 4,47 birim zaman geçecek ve yeni zaman 628,47

birim olacaktır. Aracın şimdiki zaman birimi 4 nolu müşterinin (727, 782) zaman aralığından önce olduğu

için araç müşterinin açılış zamanı 727 ye kadar bekleyecektir. Açılış zamanı geldiğinde aracın şimdiki

zamanı 727 birim olacaktır. 90 birimlik teslimat süresinden sonra aracın şimdiki zaman birimi 817 ve

aracın mevcut kullanılan kapasitesi 40 adet olduğundan, aracın 9 nolu müşteriden sonraki rotası 4 nolu

müşteri olmuş oldu. Araç 4 nolu müşteriden 1 nolu müşteriye gittiğinde 3,00 birimlik zaman geçecek ve

yeni zaman 820 birim olacaktır. 1 nolu müşterinin açılış zamanı 912 birim olduğundan dolayı araç bu

saate kadar bekleyecek olup, aracın o saat geldiğinde şimdiki zamanı 912 birim olacaktır. 1 nolu müşteri

böylece müşteri listesinden silinmiş oldu. Listede kalan 2, 3, 5, 6, 8, 10 numaralı müşteriler sırasıyla

kapasite ve zaman penceresi kısıtlarını sağlamadıklarından dolayı ilk aracın rotasındaki ilgili sıraya

atanamamışlardır. Sonuç olarak araç 1’in rotasında sırasıyla 7, 9, 4 ve 1 nolu müşteriler yer almış olup,

araç depodan sırasıyla müşteri 7, müşteri 9, müşteri 4 ve müşteri 1’e oradan da tekrar depoya dönecektir.

2, 3, 5, 6, 8, 10 numaralı müşteriler henüz bir rotaya atanmamış olduklarından sıradaki araçlara

problemin kısıtlarını sağlayacak şekilde rastgele seçilerek, 1. aracın rotasında yapılan işlemlere benzer

şekilde tahsis edilirler. Söz konusu araçların başlangıç noktaları depodur ve mevcut kullanılan

kapasiteleri ve şimdiki zamanları 0’dır. Diğer yiyecek kaynakları da benzer şekilde rastgele oluşturulur

ve uygunluk değerleri amaç fonksiyonuna göre hesaplanır. Rastgele oluşturulan yiyecek kaynaklarına

ait çözümler, uygunluk değerleri ve araç sayıları aşağıda ifade edilmiştir.

Yiyecek Kaynakları (Rastgele Kaşif Arı Yiyecek Kaynakları)

𝑅𝑌𝐾1: 0 7 9 4 1 0 2 0 5 3 8 10 6 0 → 𝑓𝑟𝑦𝑘1 = 136,9, Araç Sayısı = 3

𝑅𝑌𝐾2: 0 9 1 0 3 7 6 4 0 10 2 0 8 0 5 0 → 𝑓𝑟𝑦𝑘2 = 202,16, Araç Sayısı = 5

𝑅𝑌𝐾3: 0 1 0 4 2 0 5 3 7 8 9 0 6 0 10 0 → 𝑓𝑟𝑦𝑘3 = 194,28, Araç Sayısı = 5

Yiyecek Kaynakları (Gözcü Arı ve Kâşif Arı Birleştirilmiş Yiyecek Kaynakları)

𝑌𝐾1
1: 0 4 2 1 0 5 7 8 10 9 0 3 6 0 → 𝑓1

1 = 128,8, Araç Sayısı = 3

𝑌𝐾2
11 : 0 2 1 0 5 3 7 8 10 0 9 6 4 0 → 𝑓2

11 = 125,32, Araç Sayısı = 3
𝑌𝐾3: 0 5 3 7 8 10 0 9 6 4 2 0 1 0 → 𝑓3 = 127,50, Araç Sayısı = 3

𝑅𝑌𝐾1: 0 7 9 4 1 0 2 0 5 3 8 10 6 0 → 𝑓𝑟𝑦𝑘1 = 136,9, Araç Sayısı = 3

𝑅𝑌𝐾2: 0 9 1 0 3 7 6 4 0 10 2 0 8 0 5 0 → 𝑓𝑟𝑦𝑘2 = 202,16, Araç Sayısı = 5

𝑅𝑌𝐾3: 0 1 0 4 2 0 5 3 7 8 9 0 6 0 10 0 → 𝑓𝑟𝑦𝑘3 = 194,28, Araç Sayısı = 5

En İyi Sonuç

𝑌𝐾2
11 : 0 2 1 0 5 3 7 8 10 0 9 6 4 0 → 𝑓2

11 = 125,32, Araç Sayısı = 3

Durum 2: Kâşif arı evresindeki yiyecek kaynaklarının EYK ile oluşturulması

Yiyecek kaynakları başlangıç evresinde olduğu gibi EYK ile oluşturulmuş, uygunluk değerleri ve

araç sayıları ile birlikte bu yiyecek kaynakları aşağıda belirtilmiştir.

Yiyecek Kaynakları (EYK Kâşif Arı Yiyecek Kaynakları)

EYKYK1: 0 6 4 2 1 0 5 3 7 8 10 0 9 0 → 𝑓𝑒𝑦𝑘𝑦𝑘1 = 127,6, Araç Sayısı = 3

EYKYK2: 0 10 9 6 4 1 0 2 0 7 8 0 3 0 5 0 → 𝑓𝑒𝑦𝑘𝑦𝑘2 = 188,6, Araç Sayısı = 5

EYKYK3: 0 4 2 1 0 7 8 10 9 0 5 3 6 0 → 𝑓𝑒𝑦𝑘𝑦𝑘3 = 128,68, Araç Sayısı = 3

Yiyecek Kaynakları (Gözcü Arı ve Kâşif Arı Birleştirilmiş Yiyecek Kaynakları)

𝑌𝐾1
1: 0 4 2 1 0 5 7 8 10 9 0 3 6 0 → 𝑓1

1 = 128,8, Araç Sayısı = 3

𝑌𝐾2
11 : 0 2 1 0 5 3 7 8 10 0 9 6 4 0 → 𝑓2

11 = 125,32, Araç Sayısı = 3
𝑌𝐾3: 0 5 3 7 8 10 0 9 6 4 2 0 1 0 → 𝑓3 = 127,50, Araç Sayısı = 3

EYKYK1: 0 6 4 2 1 0 5 3 7 8 10 0 9 0 → 𝑓𝑒𝑦𝑘𝑦𝑘1 = 127,6, Araç Sayısı = 3

EYKYK2: 0 10 9 6 4 1 0 2 0 7 8 0 3 0 5 0 → 𝑓𝑒𝑦𝑘𝑦𝑘2 = 188,6, Araç Sayısı = 5

EYKYK3: 0 4 2 1 0 7 8 10 9 0 5 3 6 0 → 𝑓𝑒𝑦𝑘𝑦𝑘3 = 128,68, Araç Sayısı = 3

En İyi Sonuç

𝑌𝐾2
11 : 0 2 1 0 5 3 7 8 10 0 9 6 4 0 → 𝑓2

11 = 125,32, Araç Sayısı = 3

Bu bölümde ateş böceklerinin biyolojik temellerine, geceleri yanıp sönen ışıkları sayesinde

partnerlerini çekmeleri veya olası tehditlere karşı önlem aldıklarına, temel ateş böceği algoritmasına,

ayrık ateş böceği algoritmasına, zaman pencereli araç rotalama problemi için geliştirilen ateş böceği

algoritmasına değinilmiş ve geliştirilen algoritmanın işleyişi küçük boyutlu bir örnek üzerinde

gösterilmiştir. Diğer taraftan iki ateş böceği arasındaki uzaklığın hesaplanması iki ayrı formülle ele

alınmıştır. Temel ateş böceği algoritmasında bu uzaklık Öklid uzaklığı ile ele alınırken ayrık ateş böceği

algoritmasında ise Hamming uzaklığı ile hesaplanmıştır. Problem için geliştirilen ateş böceği

algoritmasında başlangıç ateş böceği popülasyonu rastgele ve en yakın komşu algoritması olmak üzere

iki farklı şekilde oluşturulmuştur. Yeni ateş böceklerinin oluşturulmasında ekleme, yer değiştirme ve 2 −

𝑜𝑝𝑡∗ operatörlerinden faydalanılmıştır.

Ateş böcekleri, tüm böceklerin en karizmatikleri arasındadır ve muhteşem kur gösterileri şairlere ve

bilim adamlarına ilham kaynağı olmuştur. Günümüzde dünya çapında 2000'den fazla türü

bulunmaktadır. Genellikle, ateş böcekleri çeşitli sıcak ortamlarda yaşar ve en çok yaz gecelerinde

aktiftirler. Birçok araştırmacı, doğada ateşböceği olaylarını incelemiş olup, ateş böceklerini araştıran çok

sayıda makale literatürde yer almaktadır.

Ateş böcekleri, biyokimyasal proses biyolüminesansı tarafından üretilen yanıp sönen ışıklarıyla

karakterize edilir. Bu tür yanıp sönen ışık, çiftleşme için birincil kur sinyalleri olarak işlev görebilir. Yanıp

sönen ışık çiftleşme partnerlerini çekmenin yanı sıra, potansiyel yırtıcıları uyarmaya da yarayabilir. Bazı

ateş böceği türlerinde bazı yetişkinler biyolüminesanstan yoksundur. Bu türler karıncalara benzer

şekilde feromon sayesinde eşlerini çekerler.

Ateş böceklerinde, biyolüminesan reaksiyonlar fener adı verilen ışık üreten organlardan meydana

gelir. En biyolüminesan organizmalar sadece yavaş modüle edilmiş flaşlar sağlar (ayrıca parıltılar). Buna

karşılık, birçok ateş böceği türündeki yetişkinler, yüksek ve ayrık flaşlar yaymak için

biyolüminesanslarını kontrol edebilirler. Fenerlerin ışık üretimi, ateşböceğinin merkezi sinir sisteminden

kaynaklanan sinyallerle başlatılır.

Çoğu ateş böceği türleri, biyolüminesans kur sinyallerine güvenir. Tipik olarak, ilk işaretçiler

zeminde uçamayan dişileri çekmeye çalışan uçan erkeklerdir. Bu sinyallere yanıt olarak, dişiler sürekli

veya yanıp sönen ışıklar yayar. Her iki çiftleşme ortağı da tür kimliği ve cinsiyet gibi bilgileri kodlamak

için kesin olarak zamanlanmış farklı flaş sinyal örnekleri üretir. Dişiler, kur sinyalindeki davranış

farklılıklarına göre cezbedilmektedir. Tipik olarak, dişiler daha parlak erkek flaşları tercih eder. Flaş

yoğunluğunun kaynaktan uzaklığa göre değiştiği iyi bilinmektedir. Neyse ki, bazı ateş böceği türlerinde

dişiler daha güçlü ışık kaynağı tarafından üretilen daha uzak flaşlar ile zayıf ışık kaynakları tarafından

üretilen daha yakın flaşlar arasında ayrım yapamazlar.

Ateş böceği flaş sinyalleri oldukça dikkat çekicidir ve bu nedenle çok çeşitli potansiyel yırtıcıları

caydırabilir. Sadece en güçlü bireyin hayatta kalabileceği doğal seleksiyon anlamında, flaş sinyalleri

potansiyel yırtıcıları uyarmaya yarayan savunma mekanizmaları olarak gelişir (Fister vd., 2013: 35-36).

Ateş böceği, çoğunlukla biyolüminesans işlemiyle üretilen kısa ve ritmik flaşlar üreten bir böcektir.

Ateş böcekleri, yanıp sönen ışıkları sayesinde, partnerlerini ve potansiyel avları kendilerine doğru

çekerlerken aynı zamanda bu ışıkları yırtıcıya karşı koruyucu bir önlem olarak kullanırlar. Böylece, ışık

yoğunluğu ateş böceklerinin diğer ateş böceklerine doğru hareket etmesi olarak tanımlanabilir.

Işık yoğunluğu, seyredenin gözünden uzaklığa göre değişiklik göstermektedir. Uzaklık arttıkça ışık

yoğunluğunun azaldığını söylemek güvenlidir. Işık yoğunluğu aynı zamanda çevre tarafından emilen

havanın etkisidir, böylece uzaklık arttıkça yoğunluk daha az çekici hale gelir (Ali vd., 2014: 1732).

İlk olarak Yang (2008, 2009) tarafından geliştirilen temel ateş böceği algoritması, ateş böceklerinin

yanıp sönen özelliklerinin ideal davranışlarına dayanır. Algoritmayı doğru bir şekilde anlamak için

aşağıdaki üç ideal kuralı belirtmek önemlidir:

 Sürüdeki tüm ateş böcekleri cinsiyetsiz olarak kabul edilir ve böylece bir ateş böceği

cinsiyeti ne olursa olsun diğer ateş böceklerini etkileyebilir.

 Çekicilik, parlaklık ile orantılıdır, yani herhangi iki ateşböceği için daha parlak olanın

daha az parlak olanı çekeceği anlamına gelir. Ateş böcekleri arasındaki uzaklık arttıkça çekicilik azalır.

Ayrıca, bir ateş böceği sürünün en parlak olanı ise, rastgele hareket eder.

 Bir ateş böceğinin parlaklığı doğrudan söz konusu problemin amaç fonksiyonu

tarafından belirlenir. Bu şekilde, bir maksimizasyon problemi için parlaklık amaç fonksiyon değeri ile

orantılı olabilir. Öte yandan, bir minimizasyon problemi için, amaç fonksiyon değerinin karşıtı olabilir.

Yani, daha parlak olan ateş böceği amaç fonksiyon değeri en küçük olan ateş böceğidir.

Algoritma 2’de, Yang (2008) tarafından ileri sürülen temel ateş böceği algoritmasının sözde kodu

ifade edilmiştir. Bu doğrultuda, ateş böceği algoritmasında çekicilik, uzaklık ve hareket olmak üzere

dikkate alınması gereken üç önemli faktör vardır. Ateş böceği algoritmasının temel modelinde bu

faktörler aşağıdaki gibi ele alınmaktadır. Her şeyden önce, bir ateş böceğinin çekiciliği ışık yoğunluğu ile

belirlenir ve aşağıdaki formül kullanılarak hesaplanabilir:

 𝛽(𝑟) = 𝛽0𝑒
−𝛾𝑟2 (3.6)

Diğer taraftan, temel ateş böceği algoritmasında herhangi bir iki ateş böceği 𝑖 ve 𝑗 arasındaki uzaklık

𝑟𝑖𝑗, Kartezyen uzaklığı kullanılarak hesaplanır ve aşağıdaki denklemle ifade edilir:

 𝑟𝑖𝑗 = ‖𝑋𝑖 − 𝑋𝑗‖ = √∑(𝑋𝑖,𝑘 − 𝑋𝑗,𝑘)
2

𝑑

𝑘=1

 (3.7)

Burada 𝑋𝑖,𝑘, 𝑖. ateş böceğinin 𝑋𝑖 uzaysal koordinatının 𝑘. bileşenidir. Son olarak, bir 𝑖 ateş böceğinin

daha parlak olan 𝑗 ateş böceğine doğru hareketi ise aşağıdaki denklem ile belirlenir:

 𝑋𝑖 = 𝑋𝑖 + 𝛽0𝑒
−𝛾𝑟𝑖𝑗

2

(𝑋𝑗 − 𝑋𝑖) + 𝛼(𝑟𝑎𝑛𝑑 − 0,5) (3.8)

Burada 𝛼, keyfi bir parametre ve 𝑟𝑎𝑛𝑑’da [0,1] aralığındaki keyfi bir sayıdır. Öte yandan, denklemin

ikinci terimi çekim varsayımından kaynaklanmaktadır (Osaba vd., 2017: 5300-5301). Bir 𝑖. ateş böceğinin

kendisinden daha parlak olan 𝑗. ateş böceğine olan sistematik hareketi Şekil 18’de gösterilmiştir.

𝑓(𝑥)

𝑋 = 𝑥1, 𝑥2, … 𝑥𝑛
𝛾

𝑥𝑖
𝐼𝑖

𝑥𝑖
𝑥𝑗

𝐼𝑗 > 𝐼𝑖
𝑥𝑖 𝑥𝑗

𝑒−𝛾𝑟 𝑟

xi

xj

Klasik ateş böceği algoritması, sürekli optimizasyon problemleri için geliştirilmiştir. Bu sebepten

dolayı, çizelgeleme ve araç rotalama gibi farklı ayrık problemlerin çözümünde bu algoritmanın temel

versiyonu doğrudan kullanılamaz (Qamhan vd., 2019: 5). Bu sebepten algoritmanın ayrık versiyonunda

birtakım değişiklikler yapılmıştır.

İlk olarak, ileri sürülen ayrık ateş böceği algoritmasında sürüdeki her ateş böceği ayrık bir problem

için olası ve uygun bir çözümü temsil eder. Ateş böceklerinin tümü rastgele oluşturulur. Problemin amaç

fonksiyonuna göre ateş böceklerinin çekiciliği belirlenir. Problem, bir maksimizasyon problemi

olduğunda en yüksek amaç fonksiyon değerine sahip ateş böceği en çekici ateş böceği iken problem, bir

minimizasyon problemi olduğunda ise en düşük amaç fonksiyon değerine sahip ateş böceği en çekici

ateş böceğidir. Ayrıca, ışık emilim kavramı ateş böceği algoritmasının bu versiyonunda da ifade

edilmektedir. Bu durumda, 𝛾 = 0,95 ışık emilim katsayı parametresi denklem (3.8)’de de görüldüğü gibi

kullanılır. Bu parametre, literatürün çeşitli çalışmalarında önerilen ilkelere göre ayarlanmıştır. Bunun

yanı sıra, iki farklı ateş böceği arasındaki uzaklık, dizideki karşılık gelmeyen elemanların sayısı olarak

ifade edilen Hamming Uzaklığı ile hesaplanır. Örneğin; rastgele iki ateş böceği ve bu ateş böceklerinin 8

düğümden oluşan bir keyfi 𝑘 dizisi aşağıdaki gibi verilsin:

𝑥1(𝑑𝑖𝑧𝑖 − 𝑘): {0,1,2,3,4,5,6,7}

𝑥2(𝑑𝑖𝑧𝑖 − 𝑘): {0,1,3,2,5,4,6,7}

Bu durumda 𝑘 dizisi için 𝑥1 ve 𝑥2 ateş böceği arasındaki Hamming uzaklığı 4’tür. Bu aynı

karşılaştırma her dizi için yapılır. Böylece 𝑖 ve 𝑗 ateş böceği arasındaki toplam uzaklık, her dizi için

hesaplanan tüm uzaklıkların toplamıdır.

Son olarak, başka bir daha parlak 𝑗 ateş böceğine çekilen bir 𝑖 ateş böceğinin hareketi aşağıdaki gibi

hesaplanır:

 𝑛 = 𝑅𝑎𝑛𝑑𝑜𝑚(2, 𝑟𝑖𝑗 . 𝛾
𝑔) (3.9)

 𝑥𝑖 = 𝐸𝑘𝑙𝑒𝑚𝑒 𝐹𝑜𝑛𝑘𝑠𝑖𝑦𝑜𝑛𝑢(𝑥𝑖 , 𝑛) (3.10)

Burada 𝑟𝑖𝑗 , 𝑖 ateş böceği ile 𝑗 ateş böceği arasındaki Hamming uzaklığı ve 𝑔, iterasyon sayısıdır. Bu

durumda, bir ateş böceğinin hareket uzunluğu 2 ile 𝑟𝑖𝑗 . 𝛾
𝑔 arasında rastgele bir sayı olacaktır. Hareket

fonksiyonuna gelince, ekleme fonksiyonu kullanılmıştır. Bu fonksiyon, rastgele bir rotadan rastgele bir

düğüm seçer ve çıkarır. Sonra, bu düğüm seçilen düğümün dizisinin içinde rastgele bir konuma eklenir.

Bu fonksiyon, mümkün olmayan çözümler yaratmamak için kapasite kısıtlamasını dikkate alır. Daha

önce gezgin satıcı problemi için geliştirilen ve yayınlanan ateş böceği algoritması ile aynı felsefeye

takiben, önerilen ayrık ateş böceği algoritmasındaki ateş böceklerinin hareket yönleri yoktur. Bunun

yerine ateş böcekleri evrim stratejilerini kullanarak hareket ederler. Bu şekilde, her bir ateş böceği, 𝑛 tane

varis üreterek ve ekleme fonksiyonunu 𝑛 kere kullanarak hareket ederler. Bu 𝑛 hareketten sonra yeni

ateş böcekleri üretilerek en iyisi bulunmaya çalışılır.

İleri sürülen ayrık ateş böceği algoritmasının sözde kodu Algoritma 3’te gösterilmektedir. 1-3 arası

satırlarda, ateş böceklerinin başlatılması ve değerlendirilmesi aşaması olan başlangıç evresi

gerçekleştirilir. Ayrıca, 𝛾 parametresi belirlenir. Satır 4’te popülasyondaki her ateş böceği için amaç

fonksiyon değeri yani ışık yoğunluğu hesaplanır. Ek olarak, 10-12 satırlarında hareket süreci başlatılır.

10. Satırda seçilen 𝑥𝑖 ile 𝑥𝑗 arasındaki uzaklık Hamming Uzaklığı ile hesaplanır. Uzaklık elde edildiğinde,

2 ile 𝑟𝑖𝑗 . 𝛾
𝑔 arasında rastgele bir sayı olan 𝑛 parametresi hesaplanır. Son olarak hareket daha önce de

açıklandığı gibi Ekleme Fonksiyonu kullanılarak 12. satırda gerçekleştirilir. Bu hareket sürecinden sonra

ateş böcekleri satır 14’te değerlendirilir ve 17. satırda sıralanır. Bu iterasyon süreci durdurma kriteri

karşılanana kadar devam eder. (Osaba vd., 2017: 5301-5302).

𝑋 = 𝑥1, 𝑥2, … 𝑥𝑛
𝛾 = 0.95;

𝑥𝑖
𝐼𝑖 = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖)

𝑥𝑖
𝑥𝑗

𝐼𝑗 < 𝐼𝑖
𝑟𝑖𝑗 = 𝐻𝑎𝑚𝑚𝑖𝑛𝑔𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥𝑖 , 𝑥𝑗)

𝑛 = 𝑅𝑎𝑛𝑑𝑜𝑚(2, 𝑟𝑖𝑗 . 𝛾
𝑔)

𝑥𝑖 = 𝐸𝑘𝑙𝑒𝑚𝑒 𝐹𝑜𝑛𝑘𝑠𝑖𝑦𝑜𝑛𝑢(𝑥𝑖 , 𝑛)

Zaman pencereli araç rotalama problemini çözmek için önerilen ayrık ateş böceği algoritması

aşağıdaki gibidir.

ş ş

ZPARP için önerilen ateş böceği algoritmasının parametreleri; popülasyon boyutu, maksimum

iterasyon sayısı, ışık emilim katsaysısı 𝛾, ilk popülasyon aday bulma deneme sayısı ve 2 − 𝑜𝑝𝑡∗ iç

deneme sayısı algoritmanın performansını kontrol etmek için belirlenir. Başlangıç ateş böceği

popülasyonu 2 farklı şekilde belirlenmiştir. Bunlar sırasıyla rastgele başlangıç popülasyonu ve en yakın

komşu algoritması yöntemleridir. En yakın komşu sezgiselinin detayları daha önce Bölüm 3.1.4.1.1’de

ifade edilmiştir. Başlangıç ateş böceği popülasyonunun rastgele oluşturulması ise aşağıda açıklanmıştır.

ş ş

Başlangıç bireylerin rastgele oluşturulmasının meta-sezgisel algoritmaların optimizasyon kalitesini

kanıtlamada en uygun yolu olduğunu belirtmekte yarar vardır (Osaba vd., 2018: 4). Kapasite kısıtlı araç

rotalama problemini ele alan bir çalışmada, ateş böceği algoritmasında sürüdeki ateş böcekleri rastgele

olacak şekilde aşağıdaki adımlara göre oluşturulmuştur (Altabeeb vd., 2019: 3):

i. Başlangıç noktası (depo) ile bir rota oluşturulur;

ii. Müşteri listesinden rastgele bir müşteri seçilir ve müşterinin tekrar seçilmemesini sağlamak

için aynı listeden seçilen müşteri silinir;

iii. Seçilen müşteri aşağıdaki şartı sağlayacak şekilde rotaya eklenir;

 Rotanın Kapasitesi ≤ Aracın Kapasitesi ise;

Adım ii. ve iii. tekrar edilir, Aksi halde son nokta (depo) rotaya eklenir.

iv. Rota sayısı 1 arttırılır;

v. Tüm müşterilere hizmet verilene kadar i’den iv’ye kadar olan adımları tekrarla.

Bizim çalışmamızda da sürüdeki her bir ateş böceği yukarıdaki adımlara göre rastgele oluşturulacaktır.

Tabi burada iii. adımdaki

 Rotanın Kapasitesi ≤ Aracın Kapasitesi ise;

kısıtına ek olarak problemin zaman penceresi kısıtı da dikkate alınarak seçilen müşteri rotaya

eklenecektir.

ş ğ ğ İ ş ğ

Bir çalışmada, her bir ateş böceğinin ışık yoğunluğu, ateş böceğinin amaç fonksiyon değeri ile

belirlenmiştir (Qamhan vd., 2019: 5). Bir diğer çalışmada ise, ateş böceği oluşturulduktan sonra, amaç

fonksiyon değerinin hesaplanması, ilgili ateş böceğindeki tüm rotaların toplam uzaklığı olarak

yapılmıştır. Her bir rotanın uzaklığı, başlangıçtaki depo ve bitiş noktaları dahil olmak üzere tüm

müşterileri arasındaki Öklid uzaklıklarının toplamı ile hesaplanmıştır (Altabeeb vd., 2019: 3).

Bizim çalışmamızda her bir ateş böceğinin ışık yoğunluğunu, ateş böceğinin amaç fonksiyon değeri

olarak ele alınıp, amaç fonksiyon değeri de ilgili ateş böceğindeki tüm rotaların toplam uzaklığı olarak

hesaplanacaktır. Yine burada da her bir rotanın uzaklığını hesaplamada Öklid uzaklığı kullanılacaktır.

Ele aldığımız problem, bir minimizasyon problemi olduğundan en düşük amaç fonksiyon değerine sahip

ateş böceği en çekici (en iyi) ateş böceği olarak kabul edilecektir. Bu durumda her bir ateş böceğinin ışık

yoğunluğu fonksiyonu Denklem (3.11)’de ifade edilmiştir.

 𝑙𝑖 =∑𝑑𝑗

𝑘

𝑗=1

, 𝑗 = 1,2,3,… , 𝑘 (3.11)

𝑙𝑖 : 𝑖. Ateş böceğinin ışık yoğunluğu

𝑑𝑗: 𝑖. Ateş böceğinde düğümler arası uzaklık

ş ş

Yeni ateş böcekleri aşağıdaki adımlara göre oluşturulur.

Adım 1: Her bir ateş böceğinin en iyi ateş böceğine olan hamming uzaklığı hesaplanır. (HD=Depolar

hariç karşılık gelmeyen müşterilerin sayısı)

Sürekli optimizasyon problemlerinde iki ateş böceği arasındaki uzaklığı hesaplamada yaygın bir

şekilde Öklid uzaklığı kullanılır (Qamhan vd., 2019: 5). Bizim ele aldığımız ayrık problem için bu uzaklık

kullanılamaz. Bölüm 3.2.3.’te belirtildiği gibi, ayrık problemler için yaygın olarak kullanılan Hamming

uzaklığı ile her bir 𝑖 ateş böceğinin en iyi ateş böceğine olan uzaklığı aşağıdaki örnekteki gibi

hesaplanacaktır.

3 araç ve 10 müşterinin bu araçlara tahsis edilmesiyle oluşturulan 𝑥𝑖 ateş böceği (çözüm) ile bu

müşterilerin toplam uzaklık minimum olacak şekilde araçlara tahsis edilmesiyle oluşturulan en iyi ateş

böceği (çözüm) 𝑥𝑗 aşağıdaki gibi verilsin. Burada depolar 0 ile ifade edilmektedir. Bu durumda 𝑖. ateş

böceğinin en iyi ateş böceğine olan hamming uzaklığı depolar hariç karşılık gelmeyen müşterilerin

sayısına eşittir.

𝑥𝑖: 0 → 1 → 2 → 3 → 0 → 4 → 5 → 6 → 0 → 7 → 8 → 9 → 10 → 0

𝑥𝐸𝑁 İ𝑌İ: 0 → 10 → 2 → 8 → 0 → 7 → 6 → 5 → 4 → 0 → 3 → 9 → 1 → 0

𝐻𝐷𝑖,𝐸𝑁 İ𝑌İ = {
1 2 3 4 5 6 7 8 9 10
10 2 8 7 6 5 4 3 9 1

→ 𝐻𝐷𝑖,𝐸𝑁 İ𝑌İ = 8

Adım 2: Her bir ateş böceğinden oluşturulacak yeni ateş böceklerinin sayısı (aday sayısı) belirlenir.

Bir 𝑖 ateş böceğinin en iyi (en çekici) ateş böceğine doğru yapılan hareket uzunluğu aşağıdaki gibi

hesaplanır. Bu hareket uzunluğu ile bu 𝑖 ateş böceğinden oluşturulacak yeni ateş böceklerinin sayısı

belirlenir.

 𝑘 = 𝑅𝑎𝑛𝑑𝑜𝑚(2,𝐻𝐷𝑖,𝐸𝑁 İ𝑌İ. 𝛾
𝑔) (3.11)

Burada 𝐻𝐷𝑖,𝐸𝑁 İ𝑌İ, 𝑖 ateş böceği ile en iyi ateş böceği arasındaki Hamming uzaklığı, 𝑔 iterasyon sayısı

ve 𝛾, ışık emilim katsayısıdır. Bu durumda, oluşturulacak aday sayısı 2 ile 𝐻𝐷𝑖,𝐸𝑁 İ𝑌İ. 𝛾
𝑔 arasında rastgele

bir sayı olacaktır.

Adım 3: İşlem seçim değeri 𝑟 tespit edilir.

İşlem seçim değeri 𝑟, (0,1] arasında rastgele bir sayı olarak belirlenir. Bu değer için üç durum söz

konusudur.

i. 0 < 𝑟 ≤
1

3

ii.
1

3
< 𝑟 ≤

2

3

iii.
2

3
< 𝑟 ≤ 1

Adım 4: İşlem seçim değerine göre ateş böceklerine uygulanacak operatörler belirlenir ve bu operatörler

aday sayısı (𝑘) kadar ateş böceklerine uygulanarak yeni ateş böcekleri oluşturulur. Oluşturulan ateş

böcekleri arasından en iyisi bulunmaya çalışılır.

Ateş böceklerine uygulanacak operatör fonksiyonu aşağıda ifade edilmiştir.

𝑥𝑖 =

{

 𝐸𝑘𝑙𝑒𝑚𝑒(𝑥𝑖 , 𝑘), 0 < 𝑟 ≤

1

3

𝑌𝑒𝑟 𝐷𝑒ğ𝑖ş𝑡𝑖𝑟𝑚𝑒(𝑥𝑖 , 𝑘),
1

3
< 𝑟 ≤

2

3

2 − 𝑜𝑝𝑡∗(𝑥𝑖 , 𝑘),
2

3
< 𝑟 ≤ 1

 (3.12)

Burada,

i. 0 < 𝑟 ≤
1

3
 ise 𝑥𝑖 ateş böceğine 𝑘 kadar ekleme operatörü uygulanarak yeni ateş böcekleri

oluşturulur ve ışık yoğunlukları hesaplanır.

ii.
1

3
< 𝑟 ≤

2

3
 ise 𝑥𝑖 ateş böceğine 𝑘 kadar yer değiştirme operatörü uygulanır ve bu ateş böceğinden

𝑘 tane yeni ateş böceği oluşturulur ve ışık yoğunlukları hesaplanır.

iii.
2

3
< 𝑟 ≤ 1 ise 𝑥𝑖 ateş böceğine 𝑘 kadar 2 − 𝑜𝑝𝑡∗ operatörü uygulanarak bu ateş böceğinden 𝑘 tane

yeni ateş böceği oluşturulur ve ışık yoğunlukları hesaplanır.

Oluşturulan yeni ateş böceklerinin ışık yoğunluğu amaç fonksiyonuna göre hesaplanır ve ateş

böcekleri sıralanarak mevcut en iyisi bulunur.

Yeni ateş böceklerinin oluşturulmasında kullanılan operatörler aşağıdaki bölümde ifade edilmiştir.

ş ş

i. Ekleme operatörü, rastgele bir rotadan bir müşteri seçer ve çıkarır. Sonra, bu müşteri seçilen

müşteri dizisinin içinde rastgele bir konuma eklenir. Bu operatör, mümkün olmayan çözümler

yaratmamak için kapasite kısıtlamasını ve zaman penceresi kısıtını dikkate alır (Osaba vd., 2018: 14).

ii. Yer değiştirme operatörü, rastgele iki rotadan iki müşteri seçer ve seçilen bu iki müşterinin

yerlerini değiştirir. Bu operatör ekleme operatöründe olduğu gibi mümkün olmayan çözümler

oluşturmamak için kapasite ve zaman penceresi kısıtlamalarını göz önünde bulundurmalıdır (Osaba vd.,

2018: 15).

iii. 2 − 𝑜𝑝𝑡∗ operatör, ZPARP için tanıtılmıştır. 2 − 𝑜𝑝𝑡’in bir uzantısıdır. Rotaların yönünü

korumayı amaçlar. Başlangıçta 2-opt * prosedürü, her rotadaki bir bağlantıyı silerek iki rotayı keser.

Daha sonra, ilk rotadaki ilk müşteri grubu ikinci rotadaki son müşteri grubuna bağlanır ve ikinci rotadaki

ilk müşteri grubu ilk rotadaki son müşteri grubuna bağlanır. Yapılan tüm bu işlemler, mümkün olmayan

çözümler yaratmamak için kapasite ve zaman penceresi kısıtları dikkate alınarak yapılır (Braysy ve

Gendreau, 2005: 111; Wang ve Zhou, 2021: 10).

ş ş ğ

Bu kriter sürecin hangi durumlarda sona ereceğini ifade eder. Bu çalışmada maksimum iterasyon

sayısı durdurma kriteri olarak kullanılmıştır.

Geliştiriren ayrık ateş böceği algoritmasına ait adımlar aşağıda ifade edilmiştir.

Adım 1: Kullanıcının program arayüzünden belirlediği değerler ile “Populasyon Boyutu 𝑝, Maksimum

İterasyon Sayısı 𝑔𝑚𝑎𝑥, Işık Emilim Katsayısı 𝛾, Maksimum Aday Deneme Sayısı, Maksimum 2 − 𝑜𝑝𝑡∗

Deneme” değerleri belirlenir.

Adım 2: Kullanıcı ilk popülasyonun oluşumunda “En Yakın Komşu” yöntemini seçmişse 3. Adımdan,

“Rastgele” yöntemini seçmişse 4. Adımdan devam edilir.

Adım 3: “En Yakın Komşu” yöntemi ile aşağıdaki adımlar gerçekleştirilerek ilk popülasyon oluşturulur.

Adım 3.1: Depo (0) rotaya eklenir. Gidilmeyen müşteriler bulunur.

Adım 3.2: Gidilmeyen müşteriler arasından rastgele bir müşteri seçilir. Seçilen müşteri rotaya

eklenir (bu müşteri M2 olarak anılacaktır).

Adım 3.3: M2, gidilmeyenler listesinden çıkarılır.

Adım 3.4: denemeSayisi = 0 olarak belirlenir.

Adım 3.5: “denemeSayisi > maksimum aday deneme sayısı” şartı gerçekleşirse depoya dönülerek

rota sonlandırılır.

Adım 3.6: Gidilmeyenler arasında cezalı olmayanların her biri için aşağıdaki adımlar tekrar edilir.

Adım 3.6.1: Gidilmeyen bir müşteri seçilir (Mx).

Adım 3.6.2: Rotaya seçilen müşteri eklenir ve rotanın Mesafe ve Süre değeri hesaplanır. Mesafe

değeri depodan başlanarak rotadaki son müşteriye ulaşana kadar gidilmesi gereken uzaklıktır.

Süre değeri depodan başlanarak rotadaki son müşteriye ulaşıp müşteriden yükün alınarak (servis

süresi dâhil) ayrılma anına kadar geçen süredir.

Adım 3.6.3: Maliyet ve Süre değerinin en büyüğü seçilerek Mx’in maliyeti bulunur.

Adım 3.7: Gidilmeyenler arasında en düşük maliyet değerine sahip müşteri seçilir (Mbest).

Adım 3.8: Mbest rotaya eklenir.

Adım 3.9: Rotada kapalı müşteri sorunu olup olmadığı kontrol edilir. Rotada kapalı müşteri sorunu

varsa Mbest rotadan çıkarılır ve cezalı olarak belirlenir. Rotanın depoya dönülerek sonlandırılması

gerekip-gerekmediği kontrol edilir. Depoya dönülecekse, rotaya Depo eklenerek rota kapatılır.

Depoya dönülmeyecekse Adım 3.4’e dönülür.

Adım 3.10: Rotada kapalı müşteri sorunu yoksa, Mbest gidilmeyenler listesinden çıkarılır.

Adım 3.11: Gidilmeyenlerin cezaları silinir.

Adım 3.12: Aracın dolu olup olmadığı kontrol edilir. Araç yük olarak dolu ise (kapasitesi aşılmışsa)

Mbest rotadan çıkarılır ve Depo rotaya eklenerek rota kapatılır.

Adım 3.13: Gidilmeyen müşteri varsa Adım 3.4’e dönülür.

Adım 3.14: Gidilmeyen müşteri kalmamışsa rota sonlandırılır.

Adım 4: “Rastgele” yöntemi ile aşağıdaki adımlar gerçekleştirilerek ilk popülasyon oluşturulur.

Adım 4.1: Süre Deneme Sayısı= 0 olarak belirlenir.

Adım 4.2: Depo (0) rotaya eklenir. Gidilmeyen müşteriler bulunur.

Adım 4.3: Süre Deneme Sayısı değeri 1 artırılır.

Adım 4.4: “Süre Deneme Sayısı > Maksimum Aday Deneme Sayısı” şartı sağlanıyorsa depo rotaya

eklenerek rota kapatılır.

Adım 4.5: Gidilmeyen müşteriler arasından rastgele bir müşteri seçilir. Seçilen müşteri rotaya

eklenir (bu müşteri M2 olarak anılacaktır).

Adım 4.6: Rotada kapalı müşteri sorunu olup olmadığı kontrol edilir. Rotada kapalı müşteri sorunu

varsa M2 rotadan çıkarılır. Rotanın depoya dönülerek sonlandırılması gerekip-gerekmediği

kontrol edilir. Depoya dönülecekse, rotaya Depo eklenerek rota kapatılır. Depoya dönülmeyecekse

Adım 4.3’e dönülür. Kapalı müşteri sorunu yoksa Süre Deneme Sayısı değerine 0 (sıfırlanır) atanır

ve bir sonraki adımdan devam edilir.

Adım 4.7: M2, gidilmeyenler listesinden çıkarılır.

Adım 4.8: Aracın dolu olup olmadığı kontrol edilir. Araç yük olarak dolu ise (kapasitesi aşılmışsa)

M2 rotadan çıkarılır ve Depo rotaya eklenerek rota kapatılır.

Adım 4.9: Gidilmeyen müşteri kalmamışsa rota sonlandırılır.

Adım 4.10: Gidilmeyen müşteri varsa Adım 4.3’e dönülür.

Adım 5: İlk popülasyon oluşturulduktan sonra iterasyon = 1 değer ataması ile başlanarak

makIterasyonSayisi değerine ulaşana kadar aşağıdaki adımlar gerçekleştirilir.

Adım 5.1: Popülasyonun en iyi (uygunluk değeri en düşük) böceği seçilir (𝐵𝑏𝑒𝑠𝑡)

Adım 5.2: Popülasyonda en iyi böcek dışındaki tüm böcekler için aşağıdaki adımlar tekrar edilir.

Adım 5.2.1: Popülasyonda sıradaki böcek seçilir (𝐵𝑖)

Adım 5.2.2: En iyi böcek (𝐵𝑏𝑒𝑠𝑡) ile 𝐵𝑖 arasındaki uzaklık (Hamming Distance) hesaplanır (HD)

Adım 5.2.3: 𝑚𝑎𝑘𝐷𝑒𝑔𝑒𝑟 = 𝐻𝐷. (𝛾𝑖𝑡𝑒𝑟𝑎𝑠𝑦𝑜𝑛 𝑠𝑎𝑦𝚤𝑠𝚤) değeri hesaplanır

Adım 5.2.4: Aday Sayısı= Rand[2, makDeger) aralığından rastgele bir değer üretilir

Adım 5.2.5: İşlem seçim = 𝑅𝑎𝑛𝑑(0,1] aralığında rastgele bir değer üretilir

Adım 5.2.6: İşlem seçim değeri 0 < 𝑟 ≤
1

3
 aralığında ise “Ekleme Operatörü” gerçekleştirilir.

Adım 5.2.7: İşlem seçim değeri
1

3
< 𝑟 ≤

2

3
 aralığında ise “Yer Değiştirme Operatörü”

gerçekleştirilir.

Adım 5.2.8: İşlem seçim değeri
2

3
< 𝑟 ≤ 1 aralığında ise “2 − 𝑜𝑝𝑡∗Operatörü” gerçekleştirilir.

Adım 5.2.9: Aday Sayısı âdetince üretilen adaylardan en iyisi bulunarak popülasyonda 𝐵𝑖 böceği

ile yer değiştirilir.

Adım 6: Popülasyonun en iyi böceği algoritmanın nihai sonucunu barındıran çözüm olarak belirlenir.

Bölüm 3.2.4.’te anlatılanların daha kapsamlı anlaşılabilmesi açısından 10 müşteri ve bu müşterilerin

her birine ait 𝑋, 𝑌 koordinatı, servis süresi, talep miktarı, açılış zamanı ve kapanış zamanı bilgileri

aşağıdaki tabloda verilmiştir. Bu bilgiler doğrultusunda 10 araç ve her bir aracın kapasitesi 60 adet olacak

şekilde problemin çözümü anlatılacaktır. Müşteriler ile ilgili bilgiler Tablo 5’te ifade edilmiştir. Rastgele

oluşturulmuş başlangıç çözümlerden biri Şekil 19’da gösterilmiştir. Başlangıç çözümünde oluşturulan

rotalarda yer alan “0” (sıfır) ile depo ifade edilmektedir. Ateş böceği poülasyonu 4, Işık emilim katsayısı

𝛾 = 1, Maksimum iterasyon sayısı 𝑔 = 10 olsun.

𝑿 𝒀

Müşterilerin depoya ve birbirlerine olan uzaklığın hesaplanmasında öklidyen uzaklık kullanılmıştır.

Söz konusu uzaklıklar Tablo 6’da verilmiştir.

Örneğin depo ile 2 numaralı müşterinin birbirine olan uzaklığı şu şekilde hesaplanacaktır:

𝑑(𝐷𝑒𝑝𝑜,𝑀üş𝑡𝑒𝑟𝑖 2) = √(𝑥0 − 𝑥2)2 + (𝑦0 − 𝑦2)2

𝑑(𝐷𝑒𝑝𝑜,𝑀üş𝑡𝑒𝑟𝑖 2) = √(40 − 45)2 + (50 − 70)2

 = √425

 ≅ 20,62

Adım 1: Ateş Böceklerinin Rastgele Oluşturulması ve Işık Yoğunluklarının Hesaplanması

Ateş böceği algoritmasının yapısında ateş böcekleri EYK yöntemi ve rastgele olmak üzere iki şekilde

oluşturulacağına değinilmişti. Bunlardan EYK yöntemi’nin örnek üzerinde işleyişi Bölüm 3.1.5’te

başlangıç yiyecek kaynaklarını oluştururken anlatılmıştı. Burada ise sadece başlangıç ateş böceklerinden

birinin rastgele nasıl oluşturulduğu örnek üzerinde ifade edilmiştir.

𝑥1:

Rastgele oluşturulmuş başlangıç çözümde 1’inci araç aktif edilir ve bu aracın bilgileri şu şekildedir:

Başlangıç noktası depo (0) ile bir rota oluşturulur, kullanılan kapasite miktarı ve şimdiki zamanı 0’dır.

Müşteri listesinden rastgele seçilmiş 6 no’lu müşteriye bakılır, bu müşteri herhangi bir araca

atanmadığından kısıtların kontrolü yapılır. Eğer müşteri bu aracın rotasında yer alırsa, aracın şu anki

kapasitesi 20 adet olacaktır ve bu miktar aracın maksimum kapasitesi 60’dan küçüktür, yani ilk kısıt

sağlanmıştır. Araç depodan bu müşteriye müşterinin kapanış zamanından önce varabilmelidir. Depo ve

müşteri 6 arasındaki mesafe 19,00 uzaklık birimidir ve süre olarak alındığında ise 19,00 zaman birimine

karşılık gelecektir. Yani araç müşteriye vardığında şu anki zamanı 19,00 olacaktır, bu da müşterinin

kapanış zamanı olan 702 zaman biriminden öncedir, ikinci kısıt da sağlanmaktadır. Fakat müşterinin

talebini karşılamak için araç müşterinin açılış zamanına kadar beklemelidir. Bu durumda teslimat en

erken 621 zaman biriminde başlayacaktır.

Üçüncü ve son kısıt deponun son kapanış zamanı kısıtıdır, eğer müşteri bu araca tahsis edilen son

müşteri ise araç teslimat yaptıktan sonra depoya dönecek olup, bu deponun kapanış zamanından önce

gerçekleşmelidir. Bu müşteriye teslimat 621 zaman biriminde olacaktır, 90 zaman birim teslimat

süresinden sonra 711 zaman biriminde depoya geri dönmek üzere yola çıkacaktır. Aralarındaki uzaklık

simetrik olduğundan dönüşte de 19,00 zaman birimlik mesafe olacağından ve araç depoya dönecekse

730 zaman biriminde depoda olacaktır ki bu da deponun kapanış zamanı olan 1236 zaman biriminden

öncedir. Son kısıt da böylece sağlanmış oldu. Dolayısıyla birinci aracın rotasında depodan sonraki tahsis

edilen ilk müşteri 6 no’lu müşteri olmuş oldu. Aracın mevcut konumu müşteri 6, mevcut kullanılan

kapasitesi 20 adet ve şimdiki zamanı 711 zaman birimi olacaktır. Bir sonraki müşteri sorgulanırken

depoya dönüş süresi eklenmeyecektir. Aracın rotasındaki ikinci sıraya uygunluğu kontrol edilecektir.

Müşteri 6 ise bir araca atanmış olarak müşteri listesinden kaldırılacaktır.

Bir sonraki sırada 2 numaralı müşteri bulunmaktadır ve herhangi bir aracın rotasına tahsis

edilmemiştir. Kısıtlara sırasıyla bakıldığında aracın kapasite kısıtı sağlanmaktadır. Aracın şimdiki

zamanı 711, müşterinin zaman penceresi olan (825,870)’i geçmemiştir. Dolayısıyla zaman penceresi kısıtı

da sağlanmıştır. Birinci araç 6 numaralı müşteriden 2 numaralı müşteriye gittiğinde 5,10 birim zaman

geçecek ve yeni zaman 716,10 birim olacaktır. 2 nolu müşterinin açılış zamanı 825 birim olduğu için araç

bu zamana kadar bekleyecektir. Bu müşterinin servise başlama zamanı 825 birim olup, 90 birimlik

teslimat süresinden sonra aracın şimdiki zaman birimi 915 ve aracın toplam kapasitesi 50 adet olacaktır.

Dolayısıyla kısıtlar sağlandığından dolayı aracın rotasındaki ikinci müşteri 2 no’lu müşteri olarak

listeden silinerek rotaya eklenecektir. Araç 2 nolu müşteriden 1 nolu müşteriye gittiğinde 2,00 birim

zaman geçecek ve yeni zaman 917 birim olacaktır. Aracın şimdiki zaman birimi 1 nolu müşterinin (912,

967) zaman aralığında olduğu için müşterinin talebi karşılanacaktır. 90 birimlik teslimat süresinden sonra

aracın şimdiki zaman birimi 1007 ve aracın mevcut kullanılan kapasitesi 60 adet olduğundan, aracın 2

nolu müşteriden sonraki rotası 1 nolu müşteri olmuş oldu. 1 nolu müşteri de böylece müşteri listesinden

silinmiş oldu.

Listede kalan 5, 3, 7, 8, 10, 9, 4 numaralı müşteriler sırasıyla kapasite ve zaman penceresi kısıtlarını

sağlamadıklarından dolayı ilk aracın rotasındaki ilgili sıraya atanamamışlardır. Sonuç olarak araç 1’in

rotasında sırasıyla 6, 2, 1 nolu müşteriler yer almış olup, araç depodan sırasıyla müşteri 6, müşteri 2,

müşteri 1’e oradan da tekrar depoya dönecektir. 5, 3, 7, 8, 10, 9, 4 numaralı müşteriler henüz bir rotaya

atanmamış olduklarından sıradaki araçlara problemin kısıtlarını sağlayacak şekilde rastgele seçilerek, 1.

aracın rotasında yapılan işlemlere benzer şekilde tahsis edilirler. Söz konusu araçların başlangıç noktaları

depodur ve mevcut kullanılan kapasiteleri ve şimdiki zamanları 0’dır.

Bu ateş böceği (çözüm) için 3 araç aktif olarak kullanılmış ve 10 müşterinin bu üç araca tahsis

edilmesi sonrasında 3 rota oluşturulmuştur ve rotalar Şekil 19’da gösterilmiştir. Oluşturulan ateş

böceğinin ışık yoğunluğu Tablo 6’dan yararlanarak aşağıdaki gibi hesaplanmıştır.

𝑥1:

0 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
19,00

6 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
5,10

2 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,00

1 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
18,68

0

0 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
15,13

5 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
1,00

3 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,00

7 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,83

8 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
18,11

0

0 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
16,76

10 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
5,00

9 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
4,47

4 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
18,11

0

𝑙1 = 𝑑1 = 𝑡𝑜𝑝𝑙𝑎𝑚 𝑢𝑧𝑎𝑘𝑙𝚤𝑘(𝑥1)

= 19,00 + 5,10 + 2,00 + 18,68 + 15,13 + 1,00 + 2,00 + 2,83 + 18,11 + 16,76 + 5,00
+ 4,47 + 18,11 = 128,19

𝑥1 ateş böceğinin rastgele oluşturulması ve oluşturulduktan sonra bu ateş böceğinin ışık yoğunluğunun

hesaplanması yukarıda ifade edilmiştir. Geriye kalan 3 ateş böceği de benzer şekilde oluşturulmuş ve

ışık yoğunlukları hesaplanmıştır.

𝑥2:

𝑙2 = 𝑑2 = 𝑡𝑜𝑝𝑙𝑎𝑚 𝑢𝑧𝑎𝑘𝑙𝚤𝑘(𝑥2)

= 19,00 + 2,24 + 3,61 + 20,62 + 15,13 + 1,00 + 2,00 + 2,83 + 18,11 + 16,76 + 5,00
+ 7,28 + 18,68 = 132,26

𝑥3:

𝑙3 = 𝑑3 = 𝑡𝑜𝑝𝑙𝑎𝑚 𝑢𝑧𝑎𝑘𝑙𝚤𝑘(𝑥3)

= 18,11 + 3,61 + 5,00 + 2,24 + 19,00 + 20,62 + 2,00 + 18,68 + 16,12 + 2,00 + 18,11
+ 15,13 + 2,24 + 16,00 = 158,86

𝑥4:

𝑙4 = 𝑑4 = 𝑡𝑜𝑝𝑙𝑎𝑚 𝑢𝑧𝑎𝑘𝑙𝚤𝑘(𝑥4)

= 15,13 + 1,00 + 7,00 + 5,00 + 4,47 + 3,00 + 18,68 + 16,00 + 2,83 + 2,24 + 19,00
+ 20,62 + 20,62 = 135,59

Adım 2: En İyi Ateş Böceğinin (Çözümün) Bulunması

Problem bir minimizasyon problemi olduğundan en düşük ışık yoğunluğuna (amaç fonksiyon

değeri) sahip ateş böceği (çözüm) en çekici, en parlak (en iyi çözüm) ateş böceğidir.

𝑙1 = 𝑑1 = 𝑡𝑜𝑝𝑙𝑎𝑚 𝑢𝑧𝑎𝑘𝑙𝚤𝑘(𝑥1) = 128,19

𝑙2 = 𝑑2 = 𝑡𝑜𝑝𝑙𝑎𝑚 𝑢𝑧𝑎𝑘𝑙𝚤𝑘(𝑥2) = 132,26
𝑙3 = 𝑑3 = 𝑡𝑜𝑝𝑙𝑎𝑚 𝑢𝑧𝑎𝑘𝑙𝚤𝑘(𝑥3) = 158,86
𝑙4 = 𝑑4 = 𝑡𝑜𝑝𝑙𝑎𝑚 𝑢𝑧𝑎𝑘𝑙𝚤𝑘(𝑥4) = 135,59

𝑙1 < 𝑙2 < 𝑙4 < 𝑙3 olduğundan en iyi (en parlak) ateş böceği 1. ateş böceği olan

𝑥1:

dir.

Adım 3: Yeni Ateş Böceklerinin Oluşturulması

i. Her ateş böceğinin en iyi ateş böceğine doğru olan hamming uzaklığı hesaplanır. (HD=depolar

hariç karşılık gelmeyen müşterilerin sayısı)

ii. Her bir ateş böceğinden oluşturulacak yeni ateş böceklerinin sayısı belirlenir.

𝑘 = 𝑅𝑎𝑛𝑑𝑜𝑚[2,𝐻𝐷𝑖,𝐸𝑁 İ𝑌İ. 𝛾
𝑔)

iii. İşlem seçim değeri (𝑟) tespit edilir.

iv. İşlem seçim değerine göre ateş böceklerine uygulanacak operatörler belirlenir.

 0 < 𝑟 ≤
1

3
→Ekleme Operatörü


1

3
< 𝑟 ≤

2

3
→Yer Değiştirme Operatörü


2

3
< 𝑟 ≤ 1 → 2 − 𝑜𝑝𝑡∗ Operatörü

1. Ateş böceği en iyiye yaklaşıyor

𝑥𝑒𝑛 𝑖𝑦𝑖: 0 6 2 1 0 5 3 7 8 0 10 9 4 0 𝐻𝐷1,𝐸𝑁 İ𝑌İ = 0

𝑥1: 0 6 2 1 0 5 3 7 8 0 10 9 4 0

Birinci böcek en iyi ateş böceği olduğundan dolayı bu ateş böceğinden yeni ateş böcekleri

oluşturulamaz.

2. Ateş böceği en iyiye yaklaşıyor

𝑥𝑒𝑛 𝑖𝑦𝑖: 0 6 2 1 0 5 3 7 8 0 10 9 4 0 𝐻𝐷2,𝐸𝑁 İ𝑌İ = 3

𝑥2: 0 6 4 2 0 5 3 7 8 0 10 9 1 0

Oluşturulacak aday sayısı

 𝑘 = 𝑅𝑎𝑛𝑑𝑜𝑚[2,𝐻𝐷2,𝐸𝑁 İ𝑌İ. 𝛾
𝑔) = 𝑅𝑎𝑛𝑑𝑜𝑚[2,3. 10) = 2

işlem seçim değeri 𝑟 = 0,25 olsun. Bu durumda 2. Ateş böceğine 2 kez ekleme operatörü uygulanarak

yeni ateş böcekleri oluşturulur. Oluşturulan ateş böceklerinin ışık yoğunluğu hesaplanır.

𝑥2:

Rastgele seçilen 2 nolu rotadaki 7 nolu müşteri seçilerek rotadan çıkarılır. 3 nolu rotadaki 10 nolu

müşterinin önüne problemin kısıtlarını bozmadan eklenir.

Rota 2: 0 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
15,13

5⏞
10

⏟
[15,67]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
1,00

3⏞
10

⏟
[65,146]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,00

7⏞
20

⏟
[170,225]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,83

8⏞
20

⏟
[255,324]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
18,11

0

Rota 3: 0 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
16,00

7⏞
20

⏟
[170,225]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
5,00

10⏞
10

⏟
[357,410]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
5,00

9⏞
10

⏟
[534,605]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
7,28

1⏞
10

⏟
[912,967]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
18,68

0

𝑥2
1:

𝑙2
1 = 𝑑2

1 = 𝑡𝑜𝑝𝑙𝑎𝑚 𝑢𝑧𝑎𝑘𝑙𝚤𝑘(𝑥2
1)

= 19,00 + 2,24 + 3,61 + 20,62 + 15,13 + 1,00 + 4,47 + 18,11 + 16,00 + 5,00 + 5,00
+ 7,28 + 18,68 = 136,14

Rastgele seçilen 1 nolu rotadan 2 nolu müşteri seçilerek rotadan çıkarılır. 3 nolu rotadaki 9 nolu

müşteri ile 1 nolu müşterinin arasına problemin kısıtlarını sağlayacak şekilde aşağıdaki gibi eklenir ve

bu işlem sonrasında yeni ateş böceği elde edilir.

Rota 1: 0 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
19,00

6⏞
20

⏟
[621,702]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,24

4⏞
10

⏟
[727,782]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
3,61

2⏞
30

⏟
[825,870]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
20,62

0

Rota 3: 0 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
16,76

10⏞
10

⏟
[357,410]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
5,00

9⏞
10

⏟
[534,605]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
7,00

2⏞
30

⏟
[825,870]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,00

1⏞
10

⏟
[912,967]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
18,68

0

𝑥2
2:

𝑙2
2 = 𝑑2

2 = 𝑡𝑜𝑝𝑙𝑎𝑚 𝑢𝑧𝑎𝑘𝑙𝚤𝑘 (𝑥2
2)

= 19,00 + 2,24 + 18,11 + 15,13 + 1,00 + 2,00 + 2,83 + 18,11 + 16,76 + 5,00 + 7,00
+ 2,00 + 18,68 = 127,86

2. Ateş böceğine iki kez ekleme operatörü uygulanması sonucu ortaya çıkan ateş böceklerinin ışık

yoğunlukları hesaplanmış ve 𝑙2
2 < 𝑙2

1 olduğundan en iyi ateş böceğinin 𝑥2
2 olduğu tespit edilmiştir.

3. Ateş böceği en iyiye yaklaşıyor

𝑥𝑒𝑛 𝑖𝑦𝑖: 0 6 2 1 0 5 3 7 8 0 10 9 4 0 𝐻𝐷3,𝐸𝑁 İ𝑌İ = 10

𝑥3: 0 810 9 6 0 2 1 0 3 4 0 5 7 0

Oluşturulacak aday sayısı

𝑘 = 𝑅𝑎𝑛𝑑𝑜𝑚 [2,𝐻𝐷3,𝐸𝑁 İ𝑌İ. 𝛾
𝑔) = 𝑅𝑎𝑛𝑑𝑜𝑚 [2, 10. 10) = 2

işlem seçim değeri 𝑟 = 0,35 olsun. Bu durumda 3. Ateş böceğine 2 kez yer değiştirme operatörü

uygulanarak yeni ateş böcekleri oluşturulur. Bu ateş böceklerinin ışık yoğunlukları hesaplanır.

𝑥3:

Rastgele seçilen iki rota 1. ve 4. rota olsun. 1. rotadaki 8 nolu müşteri ile 4. rotadaki 7 nolu müşteri

problemin kısıtlarını bozmadan yer değiştirirse yeni ateş böceği aşağıdaki gibi olur.

Rota 1: 0 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
18,11

8⏞
20

⏟
[255,324]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
3,61

10⏞
10

⏟
[357,410]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
5,00

9⏞
10

⏟
[534,605]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,24

6⏞
20

⏟
[621,702]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
19,00

0

Rota 4: 0 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
15,13

5⏞
10

⏟
[15,67]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,24

7⏞
20

⏟
[170,225]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
16,00

0

𝑥3
1:

𝑙3
1 = 𝑑3

1 = 𝑡𝑜𝑝𝑙𝑎𝑚 𝑢𝑧𝑎𝑘𝑙𝚤𝑘(𝑥3
1)

= 16,00 + 5,00 + 5,00 + 2,24 + 19,00 + 20,62 + 2,00 + 18,68 + 16,12 + 2,00 + 18,11
+ 15,13 + 5,00 + 18,11 = 163,01

Rastgele seçilen iki rota 2 ve 3 olsun. 2. Rotadaki 2 nolu müşteri ile 3. Rotadaki 4 nolu müşteri yer

değiştirerek yeni ateş böceği aşağıdaki gibi elde edilir ve ışık yoğunluğu hesaplanır.

Rota 2: 0 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
20,62

 2⏞
30

⏟
[825,870]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,00

1⏞
10

⏟
[912,967]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
18,68

0

Rota 3: 0 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
16,12

3⏞
10

⏟
[65,146]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,00

4⏞
10

⏟
[727,782]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
18,11

0

𝑥3
2:

𝑙3
2 = 𝑑3

2 = 𝑡𝑜𝑝𝑙𝑎𝑚 𝑢𝑧𝑎𝑘𝑙𝚤𝑘(𝑥3
2)

= 18,11 + 3,61 + 5,00 + 2,24 + 19,00 + 18,11 + 3,00 + 18,68 + 16,12 + 5,00 + 20,62
+ 15,13 + 2,24 + 16,00 = 162,86

3. Ateş böceğine iki kez yer değiştirme operatörü uygulanması sonucu ortaya çıkan ateş böceklerinin

ışık yoğunlukları hesaplanmış ve 𝑙3
2 < 𝑙3

1 olduğundan en iyi ateş böceğinin 𝑥3
2 olduğu tespit edilmiştir.

4. Ateş böceği en iyiye yaklaşıyor

𝑥𝑒𝑛 𝑖𝑦𝑖: 0 6 2 1 0 5 3 7 8 0 10 9 4 0 𝐻𝐷4,𝐸𝑁 İ𝑌İ = 10

𝑥4: 0 5 3 10 9 4 1 0 7 8 6 0 2 0

Oluşturulacak aday sayısı

𝑘 = 𝑅𝑎𝑛𝑑𝑜𝑚 [2,𝐻𝐷4,𝐸𝑁 İ𝑌İ. 𝛾
𝑔) = 𝑅𝑎𝑛𝑑𝑜𝑚 [2, 10. 10) = 2

işlem seçim değeri 𝑟 = 0,80 olsun. Bu durumda 4. Ateş böceğine 2 kez 2 − 𝑜𝑝𝑡∗ operatörü uygulanarak

yeni ateş böcekleri oluşturulur. Oluşturulan ateş böcekleri ve bunlara ait ışık yoğunluğu aşağıdaki

gibidir.

𝑥4:

Rastgele iki rota 1 ve 2 olsun. Rota 1 de 3 nolu müşteri ile 10 nolu müşteri arasındaki bağlantı ile rota

2 de 7 nolu müşteri ile 8 nolu müşteri arasındaki bağlantı kesilsin. İlk rotadaki ilk müşteri grubu 2.

rotadaki son müşteri grubuna, 2. rotadaki ilk müşteri grubu 1. rotadaki son müşteri grubuna bağlanarak

yeni ateş böceği oluşturulur ve ışık yoğunluğu hesaplanır. Tüm bu yapılan işlemler aşağıda belirtilmiştir.

0 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
15,13

5⏞
10

⏟
[15,67]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
1,00

3⏞
10

⏟
[65,146]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
7,00

10⏞
10

⏟
[357,410]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
5,00

9⏞
10

⏟
[534,605]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
4,47

4⏞
10

⏟
[727,782]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
3,00

1⏞
10

⏟
[912,967]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
18,68

0

0 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
16,00

7⏞
20

⏟
[170,225]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,83

8⏞
20

⏟
[255,324]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,24

6⏞
20

⏟
[621,702]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
19,00

0

𝑥4
1:

𝑙4
1 = 𝑑4

1 = 𝑡𝑜𝑝𝑙𝑎𝑚 𝑢𝑧𝑎𝑘𝑙𝚤𝑘(𝑥4
1)

= 15,13 + 1,00 + 4,47 + 2,24 + 19,00 + 16,00 + 5,00 + 5,00 + 4,47 + 3,00 + 18,68
+ 20,62 + 20,62 = 135,23

Rastgele seçilen iki rota 1 ve 2 olsun. Rota 1’deki 9 ile 4 nolu müşteri arasındaki bağlantı ile Rota

2’deki 8 ile 6 nolu müşteri arasındaki bağlantı kesilsin. İlk rotadaki ilk müşteri grubu ikinci rotadaki son

müşteri grubuna, ikinci rotadaki ilk müşteri grubu ilk rotadaki son müşteri grubuna bağlanarak

oluşturulan ateş böceği ve bu ateş böceğine ait ışık yoğunluğu aşağıdaki gibidir.

0 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
15,13

5⏞
10

⏟
[15,67]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
1,00

3⏞
10

⏟
[65,146]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
7,00

10⏞
10

⏟
[357,410]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
5,00

9⏞
10

⏟
[534,605]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
4,47

4⏞
10

⏟
[727,782]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
3,00

1⏞
10

⏟
[912,967]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
18,68

0

0 →⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
16,00

7⏞
20

⏟
[170,225]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,83

8⏞
20

⏟
[255,324]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
2,24

6⏞
20

⏟
[621,702]

→⏞
𝑢𝑧𝑎𝑘𝑙𝚤𝑘

⏟
19,00

0

𝑥4
2:

𝑙4
2 = 𝑑4

2 = 𝑡𝑜𝑝𝑙𝑎𝑚 𝑢𝑧𝑎𝑘𝑙𝚤𝑘 (𝑥4
2)

= 15,13 + 1,00 + 7,00 + 5,00 + 2,24 + 19,00 + 16,00 + 2,83 + 4,00 + 3,00 + 18,68
+ 20,62 + 20,62 = 135,12

4. Ateş böceğine iki kez 2 − 𝑜𝑝𝑡∗ operatörü uygulanması sonucu ortaya çıkan ateş böceklerinin ışık

yoğunlukları hesaplanmış ve 𝑙4
2 < 𝑙4

1 olduğundan en iyi ateş böceğinin 𝑥4
2 olduğu tespit edilmiştir.

Buraya kadar yapılan tüm bu işlemler 1. iterasyona kadar ki olan işlemlerdir. 0. iterasyon sonucunda

her bir operatörün uygulanmasıyla ortaya çıkan ateş böcekleri arasından en iyileri seçilmiş ve aşağıda

ifade edilmiştir.

0. İterasyon sonucunda uygulanan her bir operatör sonucu ortaya çıkan en iyi ateş böcekleri

 𝑥1: 𝑙1:

 𝑥2
2: 𝑙2

2: 127,86

𝑥3
2: 𝑙3

2:

𝑥4
2: 𝑙4

2:

Bu ateş böceklerinden en iyisi ekleme operatörü sonucunda ortaya çıkan 𝑥2
2 ateş böceğidir. Geriye

kalan diğer ateş böceklerinin seçilen bu ateş böceğine olan hamming uzaklığı hesaplanır. Oluşturulacak

aday sayısı (𝑘), işlem seçim değeri (𝑟) ve işlem seçim değerine göre ateş böceklerine uygulanacak

operatörler tespit edilerek yeni ateş böcekleri oluşturulur. Oluşturulan ateş böcekleri sıralanarak en iyisi

bulunur. Süreç maksimum iterasyon sayısı 10’a ulaşılıncaya kadar devam eder.

Önceki bölümlerde detayları anlatılan yöntemlerin geliştirilmesinin ardından kullanılacak olan

yazılımın kodlanmasına geçilmiştir. Yazılım, Microsoft tarafından geliştirilmiş bir uygulama geliştirme

ortamı olan Visual Studio ortamından açık kaynak kodlu kütüphane topluluğu olan .Net Framework

kütüphaneleri kullanılarak C# programlama dilinde, Windows uygulama tipinde geliştirilmiştir. C#,

derleme ve yürütme süresi hızlı, mevcut güncelleme imkânı olan, birçok işlevsel özelliği sayesinde daha

anlaşılır ve kolay değiştirilebilir bir basit programlama dili olmasından dolayı tercih edilmiştir.

Algoritmalar Visual Studio geliştirme ortamında C# programlama dili kullanılarak Windows Forms

proje türünde geliştirilmiştir. Algoritma aşamasındaki her işlem kullanıcı tarafından adı verilen log

dosyasında ayrıntılı olarak kayıt altına alınmıştır. Kullanıcı dostu arayüze sahip olması ve üzerinde

çalıştığı donanımın işlemci ve bellek kaynaklarını rahatlıkla kullanabilmesi için Windows Forms proje

türü seçilmiştir. Solomon’un 25 ve 50’lilik veri setleri programın işleyebileceği şekilde ön işlemden

geçirilerek uygulamanın .exe uzantılı çalıştırılabilir dosyası ile aynı klasöre taşınmıştır. Programda

olması gereken özellikler çözümleme çalışmaları ile tespit edilmiş ve program aşağıdaki kısımlardan

oluşacak şekilde YAKA ve FA için ayrı ayrı ele alınmıştır.

 Parametre Bölümü: YAKA için parametre bölümünde müşteri sayısı (25, 50, 100), veri seti (C101,

C102, … ,RC108), araç kapasitesi, yiyecek kaynak sayısı=işçi arı sayısı, gözcü arı sayısı, maksimum

iterasyon sayısı, ilk popülasyon aday bulma deneme sayısı, işçi/gözcü arı aşaması deneme sayısı, alt

diziyi rastgele ekleme iç deneme sayısı ve kâşif arı evresinde yiyecek kaynaklarının seçilecek butona göre

rastgele/en yakın komşu algoritması olmak üzere iki şekilde oluşturulması için gerekli butonlara

parametre ekranında yer verilmiştir.

ABA için rastgele/en yakın komşu algoritması seçeneğine göre ateş böceklerinin oluşturulması, ateş

böceği sayısı, maksimum iterasyon sayısı, ışık emilim katsayısı, ilk popülasyon aday bulma deneme

sayısı, 2 − 𝑜𝑝𝑡∗ iç deneme sayısı ve problem için gerekli veri setlerinin ayarının yapıldığı müşteri sayısı

(25, 50, 100), araç kapasitesi ve veri seti (C101, C102, …, RC108) butonları parametre ekranında yer

almaktadır. Ayrıca her iki yöntem için yapılan her bir deney sonucunun log dosyalarına ayrıntısı ile

kaydedilmesi için gerekli buton yine parametre bölümünde tanımlanmıştır.

 En İyi Sonuç ve Çözüm Detayı: Her iki yöntem için gerekli parametre değerleri girişlerinin

yapılmasının ardından yapılan her bir deney için elde edilen en iyi sonuç ve bu sonuca ait çözüm detayı

programın ara yüzünün alt kısmında ve log dosyalarında gösterilmektedir.

 Veri Seti: İleri sürülen algoritmalar Solomon’un 25 ve 50 müşterili veri setlerinden C101, …,

C109, R101, …, R112, ve RC101, …, RC108 veri grubuna ait toplam 58 problem üzerinde test edilmiştir.

Her bir veri setinde bir depo, toplam 25 homojen filolu araç, veri setine göre şekillenen müşteri sayısı,

(𝑥, 𝑦) koordinatları ile belirtilen müşterilerin ve depoların konumları, her müşteriye ve depolara ait açılış

ve kapanış zamanları, müşterilerin talep miktarları, servis süreleri ve araç kapasiteleri bulunmaktadır.

“Nazife Sahin-Artificial Bee” ve “Nazife Sahin-Firefly” programlarının arayüzleri sırasıyla Şekil 20

ve Şekil 21’de gösterilmektedir. Arayüz; problem ve problemin çözümü için gerekli olan parametre

ayarlarının yapıldığı kısım, programın her bir çalıştırılmasında çözüm detaylarının kaydedilip

kaydedilmediği yani loglama kayıt sisteminin aktif ya da pasif olduğu kısım, log dosyasının

uygulamanın bulunduğu klasörde verilecek isme göre oluşturulacağını belirten log dosyası ve algoritma

kayıtlarının gösterildiği kısımdan oluşmaktadır.

Kayıt sistemi aktif/pasif

Hesaplama yapılması/iptal

Algoritmanın gerekli parametre ayarları

Algoritma kayıtlarının gösterimi

Log dosyasının ilgili klasörde oluşturulması

Log dosyasının ilgili klasörde oluşturulması

Kayıt sistemi aktif/pasif

Hesaplama yapılması/iptal

Algoritmanın gerekli parametre ayarlarının yapılması

Algoritma kayıtlarının gösterimi

Bu bölümde, Zaman Pencereli Araç Rotalama probleminin çözümü için kullanılacak olan YAKA için

en uygun parametre setinin belirlenmesine ilişkin yapılan deneysel çalışmalar ve sonuçları

sunulmaktadır. Populasyon büyüklüğü, işçi arı sayısı, gözcü arı sayısı, maksimum iterasyon sayısı,

maksimum aday deneme sayısı, alt dizi rastgele ekleme deneme sayısı ve kâşif arı rastgele-en yakın

komşu gibi parametreler ileri sürülen metodun performansını önemli derecede etkiler. Kâşif arı sayısı 1

olarak alınmıştır.

Bu tür problemlerde en iyi parametre setini elde etmek için çeşitli çalışmalar yapılmasına rağmen,

parametrelerin tespitinin yapılmasında en uygun yöntem varyans analizidir. Diğer taraftan Varyans

Analizi (ANOVA) testleri ile bir dizi tekrarlı deney sonucunda elde edilen uygunluk değerlerinin

ortalamaları arasında anlamlı bir farkın olup olmadığı belirlenebilir (Şahin, 2014: 133). Yapılacak

deneylerde kullanılacak parametre değerleri aşağıdaki Tablo 7’de ifade edilmektedir.

𝒀
𝑨
𝑲
𝑨
𝒁
𝑷
𝑨
𝑹
𝑷

İstatistiksel deney tasarımında tam faktöriyel, kesirli faktöriyel ve taguchi olmak üzere farklı

yöntemler kullanılmaktadır. Tam faktöriyel deney tasarımı, iki veya daha fazla parametrenin söz konusu

olduğu durumlarda bu parametrelere ait iki veya daha fazla seviye olması halinde, seviyelerin birbiri ile

çarpımı sonucu oluşan kombinasyonların tümünün dikkate alınması ile yapılırken; kesirli faktöriyel

deney tasarımı, deneye tabi tutulacak kombinasyon sayısının kesirli olarak azaltılması halinde elde

edilir. Değişkenliği oluşturan ve kontrol edilemeyen faktörlere karşı, kontrol edilebilen faktörlerin

düzeylerinin en uygun kombinasyonunu seçerek, değişkenliği en aza indirmeye çalışan Taguchi

yöntemi, Genichi Taguchi tarafından ileri sürülmüş bir deneysel tasarım yöntemidir (Gökçe ve

Taşgetiren, 2009: 75-76; Şahin, 2014: 134). Burada Taguchi deney tasarımı yöntemi kullanılarak Tablo 7’de

ifade edilen parametre değerleri ile deneyler gerçekleştirilmiştir. Deneysel çalışmada toplam 7 parametre

ve her bir parametreye ait 2 seviye bulunduğu için L16 ortogonal dizisi kullanılmış ve toplamda 16 farklı

parametre değerleri elde edilmiştir. Bu elde edilen farklı parametre değerleri ile 5 tekrarlı deney

yapılarak en uygun parametre seti belirlenmeye çalışılmıştır. L16 ortogonal dizisi ve parametre

karşılıkları Tablo 8 ve Tablo 9’da ifade edilmektedir.

Deneyler, 16 GB RAM belleği olan 2.60 Ghz işlemcili standart bir bilgisayar yardımıyla Solomon’un

50 müşterili veri setlerinden olan C101 üzerinde gerçekleştirilmiştir. Farklı parametre değerleri dikkate

alınarak toplamda 16𝑥5 = 80 adet deney yapılmış ve deneylerden elde edilen uygunluk değerleri Tablo

10’da gösterilmiştir.

𝑭 𝑭 𝑭 𝑭

Elde edilen verilerin istatistiksel analizine başlamadan önce veri setinin parametrik mi yoksa

nonparametrik mi olup olmadığının tespitinin yapılması gerekmektedir. Verilerin normal dağılıma

uyması, varyansların homojen olması, verilerin aralıklı ölçekleme yapısına sahip olması ve bağımsızlık

gibi parametrik veri varsayımları dikkate alınarak hangi istatistiksel testin yapılacağına karar verilir. Bu

varsayımlardan biri veya bir kaçı sağlanmıyorsa parametrik yöntemler (bağımsız t testi, tek yönlü

ANOVA vb.) yerine parametrik olmayan yöntemler (Mann Whitney, Kruskall-Wallis vb.) tercih edilir

(Durmuş, 2019: 360). Bu çalışmada verilerin normal dağılım gösterip göstermediği araştırılırken

Anderson-Darling testinden yararlanılmıştır. Ortaya çıkan sonuçlar, 0,05 anlamlılık düzeyine göre; 𝑝 >

0,05 olduğunda verilerin normal dağılıma uyduğu, 𝑝 < 0,05 olduğunda ise verilerin normal dağılıma

uymadığı şeklinde yorumlanmıştır. Normallik testi gerçekleştirilmiş ve deneysel verilerin normallik testi

sonuçları Şekil 22’de gösterilmiştir.

Şekil 22 incelendiğinde 𝑝 değeri 𝑝 < 0,005 olarak elde edilmiştir. 𝑝 değeri 0,05 ten küçük olduğundan

veriler normal dağılıma uygun değildir. Dolayısıyla elde edilen uygunluk değerleri parametrik

testlerden olan Tek Yönlü ANOVA’nın parametrik olmayan karşılığı olan Kruskall-Wallis testine tabi

tutulmuş ve nihai test sonuçları Tablo 11’de verilmiştir. 𝑝 değerinin 0,05’ten küçük olması grup

medyanlar arasında fark olduğu anlamına gelmektedir.

13 ve 16 numaralı parametre setleri elde edilen deney sonuçları içerisinde en düşük medyan

değerlerine sahip parametre setleridir. Bu parametre setlerinin medyan değerleri birbirine eşit

olduğundan deney sonucu ortaya çıkan uygunluk değerlerinin ortalamaları hesaplanarak en düşük

ortalamaya sahip parametre setinin yöntem için kullanılması uygun görülmüştür. 13. ve 16. parametre

setinin uygunluk değerlerinin ortalaması Tablo12’de gösterilmiştir.

𝑭 𝑭

13 nolu parametre seti Zaman Pencereli Araç Rotalama problemi için en düşük ortalama değerine

sahip olduğundan bu parametre seti Yapay Arı Kolonisi Algoritması yönteminin en uygun parametre

seti olarak belirlenmiştir. Parametrelere ait değerler Tablo 13’te ifade edilmektedir.

YAKAZPARP

Bu kısımda, Zaman Pencereli Araç Rotalama probleminin çözümünde kullanılacak olan Ateş Böceği

Algoritması (ABA) için en uygun parametre setinin belirlenmesine yönelik yapılan deneysel çalışmalar

ve sonuçları sunulmaktadır. Ateş böceği sayısı (popülasyon), maksimum iterasyon sayısı, ışık emilim

katsayısı, ilk popülasyon aday bulma deneme sayısı, ilk popülasyon oluşturma yöntemi (Rastgele/En

Yakın) ve 2 − 𝑜𝑝𝑡∗ iç deneme sayısı gibi parametreler ileri sürülen yöntemin akışını etkileyecek

parametrelerdir. Yine bu kısımda algoritmanın performansını olumlu yönde etkileyen en uygun

parametre seti ANOVA testleri ile belirlenmiştir. ANOVA testleri için yapılacak deneylerde gerekli

parametreler ve değerleri Tablo 14’te ifade edilmektedir.

2 − 𝑜𝑝𝑡∗

YAKA’da olduğu gibi burada da Taguchi deneysel tasarım yöntemi ile parametre analizinin

yapılması uygun görülmüştür. Algoritma için gerekli olan 6 farklı parametreden 5’i üç seviye 1’i 2 seviye

olarak dikkate alındığı için L18(2^13^5) ortogonal dizisi aracılığıyla toplamda 18 farklı parametre

değerleri ile 5 tekrarlı deney yapılarak en uygun parametre seti tespit edilmeye çalışılmıştır. Deney için

gerekli L18(2^13^5) ortogonal dizisi ve parametre karşılıkları Tablo 15 ve Tablo 16’da belirtilmiştir.

Deneyler, 16 GB RAM belleği olan 2.60 Ghz işlemcili standart bir bilgisayar yardımıyla Solomon’un

25 müşterili veri setlerinden olan C101 üzerinde gerçekleştirilmiştir. Farklı parametre değerleri dikkate

alınarak toplamda 18𝑥5 = 90 adet deney yapılmış ve deneyler sonucunda elde edilen uygunluk

değerleri Tablo 17’de gösterilmiştir.

𝑭 𝑭 𝑭 𝑭 𝑭 𝑭

Anova testlerine geçilmeden önce Anderson Darling testi ile Tablo 17’deki uygunluk değerlerinin

normalliği test edilmiş ve sonuçlar Şekil 23’te ifade edilmiştir.

Şekil 23’te 𝑝 < 0,005 olduğundan 0,05 anlamlılık düzeyine göre veriler normal dağılıma

uymamaktadır. Bu nedenle Kruskal Wallis testi ile uygunluk değerleri test edilmiş ve elde edilen test

sonuçları Tablo 18’de verilmiştir. 𝑝 değerlerinin 0,05’ten küçük çıkması, ortanca uygunluk değerlerinin

en az bir parametre seti için farklı olduğu anlamına gelmektedir.

Elde edilen deney sonuçları içerisinde en düşük medyan değerine sahip parametre setleri 11 ve

18’dir. Bu parametre setlerinin medyan değerleri birbirine eşit olduğundan deney sonucu ortaya çıkan

uygunluk değerlerinin ortalamaları hesaplanmış ve en düşük ortalamayı veren parametre seti en uygun

parametre seti olarak belirlenmiştir. 11. ve 18. parametre setinin uygunluk değerlerinin ortalaması Tablo

19’da gösterilmiştir.

𝑭 𝑭

Böylece Ateş Böceği Algoritması için en uygun parametre setinin en düşük ortalama değerine sahip

18 nolu parametre seti olduğu ortaya çıkmıştır. Her bir parametrenin değerleri ve seviyeleri Tablo 20’de

gösterilmektedir.

ABAZPARP

2 − 𝑜𝑝𝑡∗

Algoritmalar, 25 ve 50 müşterili üç farklı problem türünden (C101, …,C109, R101, …,R112 ve

RC101,…, RC108) oluşan klasik bir dizi kıyaslama probleminin 58’i (Solomon, 1987) üzerinde test

edilmiştir.

Veri setleri http://www.bernabe.dorronsoro.es/vrp/index.html?/results/resultsSolom.htm

adresinden alınmıştır. Bu problem verilerinin genel olarak özellikleri aşağıda tanımlanmaktadır.

Müşterilerin rastsal olarak coğrafi bölgelere dağıldığı R1 tipi problemlerde, zaman pencereleri sıkı

ve araç kapasiteleri küçüktür. R2 tipi problemlerde müşteriler R1’de olduğu gibi rastsal olarak coğrafi

bölgelere dağılmıştır. Fakat bu problem verilerinde her bir müşteriye hizmet verilmesi gereken zaman

aralığı geniş ve araç kapasiteleri büyüktür. C1 tipi problemlerde müşteriler coğrafi bölgelere kümelenmiş

bir biçimde dağılım göstermiştir. Her bir müşteriye hizmet verilmesi gereken zaman aralıkları sıkı ve

araç kapasiteleri küçüktür. C2 tipi problemlerde her bir müşteriye hizmet verilmesi gereken zaman

aralığı geniş ve araç kapasiteleri büyük iken yine C1’de olduğu gibi müşteriler coğrafi bölgelere

kümelenmiş bir şekilde dağılmışlardır. RC1 ve RC2 tipi problemlerde müşteriler hem rastsal hem de

kümelenmiş bir biçimde coğrafi bölgelere dağılım göstermişlerdir. RC1’de araç kapasitesi küçük ve

zaman aralığı dar olup her rotada çok fazla müşteriye hizmet verilememektedir. RC2 tipi problemlerde

ise zaman aralıkları geniş olmakla birlikte araç kapasitelerinin büyük olması çok az rotaya ihtiyaç

olduğunu gösterir (Kuram, 2016: 73-74).

25, 50 ve 100 müşterili veri setleri sırasıyla, birbirinden ayrılmış farklı coğrafi bölgelerde yer alan 25,

50 ve 100 müşteri ve bir depodan oluşmaktadır. Hizmet süresi ve araç kapasiteleri veri setine göre

farklılık göstermektedir. R ve RC tipi problemlerde müşterilerin hizmet süresi 10 birim iken C tipi

problemlerde ise 90 birim olarak ele alınmıştır. R1, C1 ve RC1 tipi problemlerde araç kapasiteleri 200

http://www.bernabe.dorronsoro.es/vrp/index.html?/results/resultsSolom.htm

birim, R2 ve RC2 tipi problemlerde 1000 birim iken C2 tipi problemlerde ise araç kapasiteleri 700 birim

olarak ele alınmış ve her araç homojen filolu bir yapıya sahiptir.

Çalışma kapsamında ileri sürülen YAKA ve ABA yöntemleri literatürde ilk defa zaman pencereli

araç rotalama probleminin eş zamanlı çözümünü sağlamaktadır. Daha önce ikisini birlikte ele alan bir

çalışma olmadığı için ileri sürülen yöntemlerin etkinliği Solomon’un (1987) 25 ve 50 müşterili veri setleri

kullanılarak test edilmiştir. 25 ve 50 müşterili veri setlerinden sadece C1, R1 ve RC1 grubuna ait problem

verileri kullanılmıştır. Tablo 21’de karşılaştırma için kullanılan yöntemler, Tablo 22’de ise 25 müşterili

problem setlerinin geliştirilen yöntemlerle çözümünden elde edilen uygunluk değerleri ve en iyi çözüme

uzaklıkları gösterilmektedir.

𝑭𝒃𝒆𝒔𝒕

Not: Bard vd., (2002) C10_, R10_ ve RC10_ veri setleri için deney yapmamıştır. Gong vd., (2011) ve

Yodwangjai and Malampong (2022) R112 veri seti için deney yapmamıştır.

Tablo 22’de ifade edilen veri setleri üzerinde YAKA yöntemi ile %0,20 ile %19,64 arasında; ABA

yöntemi ile %0,20 ile %35,23 arasında değişen oranlarda çözümler elde edilmiştir. Birçok veri setinde

bilinen en iyi çözüme yakın ve karşılaştırılan diğer yöntemlerden daha iyi sonuçlar YAKA yöntemi ile

sağlanmıştır. RC104 hariç diğer deney setleri üzerinde YAKA ile %0,20 ile %7,27 arasında değişen

oranlarda en iyi çözüme yakın iyi sonuçlar elde edilirken; ABA yöntemi ile ise birçok problem verisinde,

%12,26 ile %35,23 arasında karşılaştırılan diğer yöntemler ve YAKA’dan uzakta sonuçlar elde edilmiştir.

YAKA, ABA ile karşılaştırıldığında 29 test probleminin 23’ünde daha iyi sonuçlar ortaya çıkarmıştır. 14

problem verisinde ABA yöntemi ile %0,20 ile %9,02 arasında değişen oranlarda bilinen en iyi çözüme

yakın sonuçlar elde edilmiştir. Diğer taraftan R101, RC102, RC106 ve RC107 problemlerinde ABA ile elde

edilen uygunluk değerlerinin YAKA ile elde edilen uygunluk değerlerinden daha küçük çıkması bu veri

setleri için ABA yönteminin YAKA yönteminden daha iyi performans gösterdiğini ortaya koymuştur.

C101 ve RC108 problemleri için kullanılan her iki yöntemde de sırasıyla bilinen en iyi çözümden %0,27

ve %4,32 farkla aynı sonuçlar elde edilmiştir. Karşılaştırma neticesinde ele alınan 25 müşterili veri

setlerinin çoğunda YAKA yönteminin ABA ve diğer yöntemlere kıyasla daha iyi sonuçlar ortaya

çıkardığı tespit edilmiştir. Genel olarak 25 müşterili deney setleri üzerinde sonuçlar incelendiğinde,

problem için geliştirilen YAKA yönteminin performans açısından yeterli bulunmuş olması ile birlikte

ABA için aynı durumun söz konusu olmadığı ortaya çıkmıştır. Elde edilen uygunluk değerlerine ilişkin

grafik Şekil 24’te belirtilmektedir. Grafikte C10_ veri setlerinde yöntemler değerlendirilecek olursa;

YAKA yöntemi, bu veri grubundaki tüm problemler üzerinde bilinen en iyi çözüme ve karşılaştırılan

diğer yöntemlere eşit seviyede sonuçlar ortaya çıkarırken, ABA yöntemi, sadece C101 ve C105 problemi

üzerinde bilinen en iyi çözüme ve karşılaştırılan diğer yöntemlere oldukça yakın sonuçlar sağlamıştır.

50 müşterili veri setlerinin geliştirilen yöntemler ile çözümünden elde edilen uygunluk değerleri ve

en iyi çözüme uzaklıkları, Tablo 23’te ifade edilmektedir. Tabloda gösterilen veri setleri üzerinde YAKA

0

100

200

300

400

500

600

700

C
1

0
1

C
1

0
2

C
1

0
3

C
1

0
4

C
1

0
5

C
1

0
6

C
1

0
7

C
1

0
8

C
1

0
9

R
1

0
1

R
1

0
2

R
1

0
3

R
1

0
4

R
1

0
5

R
1

0
6

R
1

0
7

R
1

0
8

R
1

0
9

R
1

1
0

R
1

1
1

R
1

1
2

R
C

1
0

1

R
C

1
0

2

R
C

1
0

3

R
C

1
0

4

R
C

1
0

5

R
C

1
0

6

R
C

1
0

7

R
C

1
0

8

U
Y

G
U

N
L

U
K

 D
E

Ğ
E

R
L

E
R

İ

VERİ SETLERİ

2 5 M ÜŞTERİLİ VERİ SETLERİNDE YÖNTEM LERİN

KARŞILAŞTIRILM ASI

PSO1

PSO2

WOA

Fbest

YAKA

ABA

yöntemi ile %0,21 ile %15,86 arasında; ABA yöntemi ile %15,61 ile %65,96 arasında değişen oranlarda

çözümler elde edilmiştir. Birçok veri setinde karşılaştırmada kullanılan yöntemlerin sonucuna eşit ve bu

yöntemlerden daha iyi sonuçlar YAKA yöntemi ile ortaya konmuştur. Ele alınan veri setinin tamamında

ABA yöntemi ile elde edilen uygunluk değerleri, YAKA ve karşılaştırılan diğer yöntemlerden elde edilen

uygunluk değerlerinden çözüm kalitesi açısından olumsuz sonuçlanmıştır. RC106 hariç RC10_veri

grubundaki tüm problemler ve C104 problemi için YAKA yöntemi ile elde edilen çözüm değeri,

karşılaştırılan diğer yöntemlerden elde edilen çözüm değerlerinden büyük çıkmıştır. 50 müşterili veri

setleri üzerinde genel değerlendirme yapılacak olursa; toplam 29 test probleminin tamamında YAKA

yöntemi ile ortaya çıkan uygunluk değerlerinin %0,21 ile %15,86 değişen oranlarda bilinen en iyi çözüme

yakın çıkması geliştirilen bu yöntemin zaman pencereli araç rotalama problemi için yeterli olduğunu

göstermiştir. ABA yöntemi ise performans açısından problemin çözümünde yetersiz kalmıştır. Müşteri

sayısındaki artış yükseldikçe yöntemlerin sonuçları arasındaki fark daha net olarak görülmektedir.

𝑭𝒃𝒆𝒔𝒕

Not: Bard vd., (2002) C10_50 veri setleri için deney yapmamıştır.

50 müşterili veri setleri üzerinde geliştirilen yöntemler ile elde edilen uygunluk değerlerine ilişkin

grafik Şekil 25’te ifade edilmektedir.

YAKA ve ABA yöntemleri kullanılarak 25 ve 50 müşterili problem setleri üzerinde 5 tekrarlı deneyler

yapılmıştır. Deneyler sonucunda zaman pencereli araç rotalama problemi için elde edilen minimum ve

maksimum([min, max]) uygunluk değerleri ve bu uygunluk değerlerine ilişkin kullanılan araç sayıları

(NV) ve ne kadar sürede elde edildiklerine ilişkin çözüm süreleri sırasıyla Tablo 24 ve Tablo 25’te ifade

edilmektedir.

𝑭𝒁𝑷𝑨𝑹𝑷 𝑭𝒁𝑷𝑨𝑹𝑷

0

200

400

600

800

1000

1200

1400

C
1

0
1

C
1

0
2

C
1

0
3

C
1

0
4

C
1

0
5

C
1

0
6

C
1

0
7

C
1

0
8

C
1

0
9

R
1

0
1

R
1

0
2

R
1

0
3

R
1

0
4

R
1

0
5

R
1

0
6

R
1

0
7

R
1

0
8

R
1

0
9

R
1

1
0

R
1

1
1

R
1

1
2

R
C

1
0

1

R
C

1
0

2

R
C

1
0

3

R
C

1
0

4

R
C

1
0

5

R
C

1
0

6

R
C

1
0

7

R
C

1
0

8U
Y

G
U

N
L

U
K

 D
E

Ğ
E

R
L

E
R

İ

VERİ SETLERİ

5 0 M ÜŞTERİLİ VERİ SETLERİNDE YÖNTEM LERİN

KARŞILAŞTIRILM ASI

PSO1

PSO2

WOA

LP

Fbest

YAKA

ABA

 Yapılan 5 tekrar sonucunda elde edilen minimum maksimum uygunluk değerleri ve bu değerlere

ilişkin araç sayıları ve hesaplama süreleri tabloda verilmektedir.

𝑭𝒁𝑷𝑨𝑹𝑷 𝑭𝒁𝑷𝑨𝑹𝑷

 Yapılan 5 tekrar sonucunda elde edilen minimu maksimum uygunluk değerleri ve bu değerlere ilişkin

araç sayıları ve hesaplama süreleri tabloda verilmektedir.

Tablo 24’te yer alan klasik zaman pencereli araç rotalama problemleri için 25 müşterili veri setleri

üzerinde yapılan deneylerden her iki yöntem ile elde edilen minimum uygunluk değerleri Tablo 26’da

özetlenmiştir. Tabloda yer alan en iyi uygunluk değerlerinin grafik üzerinde gösterimi ise Şekil 26’da yer

almaktadır.

Tablo 26’da C10_25 grubu için en iyi uygunluk değerleri incelendiğinde C101 verisi dışında kalan

diğer verilerde YAKA yönteminin ABA yöntemine göre %0,64 ile %34,83 arasında değişen oranlarda

daha iyi çözüm sağladığı görülmektedir. C101 problemi için her iki yöntem ile elde edilen uygunluk

değerleri eşit çıkmıştır. R10_25 veri grubuna ait uygunluk değerleri karşılaştırıldığında ise YAKA

yöntemi R101 problemi dışında kalan tüm problemler için ABA yöntemine göre %3,25 ile %23,53

arasında değişen oranlarda en iyi çözümü sağlamıştır. ABA yöntemi YAKA yöntemine göre %1,42 farkla

daha iyi sonucu R101 probleminde göstermiştir. RC102, RC106, RC107 ve RC108 veri setleri dışındaki

veriler için YAKA yönteminin ABA yöntemine göre %0,51 ile %19,58 arasında değişen oranlarda daha

iyi çözümler sağlamıştır. RC10_25 veri grubuna ait RC108 probleminde her iki yöntem ile yapılan

deneyler sonucu ortaya çıkan uygunluk değerleri eşit iken; RC102, RC106 ve RC107 deney verileri

üzerinde ise ABA yöntemi, YAKA yöntemine göre %0,6 ile %1,48 arasında değişen oranlarda daha iyi

sonuçlar vermiştir.

50 müşterili veri setleri üzerinde yapılan deneylerden elde edilen sonuçlar Tablo 25’te gösterilmişti.

Bu tabloda yer alan değerlerden her bir veri grubuna ait problem verileri için bulunan en iyi uygunluk

değerleri Tablo 27’da özetlenmiştir.

0

100

200

300

400

500

600

700

C
1

0
1

C
1

0
2

C
1

0
3

C
1

0
4

C
1

0
5

C
1

0
6

C
1

0
7

C
1

0
8

C
1

0
9

R
1

0
1

R
1

0
2

R
1

0
3

R
1

0
4

R
1

0
5

R
1

0
6

R
1

0
7

R
1

0
8

R
1

0
9

R
1

1
0

R
1

1
1

R
1

1
2

R
C

1
0

1

R
C

1
0

2

R
C

1
0

3

R
C

1
0

4

R
C

1
0

5

R
C

1
0

6

R
C

1
0

7

R
C

1
0

8U
Y

G
U

N
L

U
K

 D
E

Ğ
E

R
L

E
R

İ

VERİ SETLERİ

2 5 M ÜŞTERİLİ VERİ SETLERİNDE YAKA VE AB A

YÖNTEM LERİNİN UYGUNLUK DEĞERLERİNİN

KARŞILAŞTIRILM ASI

YAKA

ABA

Tablo 27’den C10_50 problem verilerinin tamamında YAKA yönteminin, ABA yöntemine göre

%24,70 ile %65,61 arasında değişen oranlarda en iyi çözümü sağlarken, R10_50 veri grubuna ait tüm

problemlerde ise YAKA yöntemi ABA yöntemine göre %11,15 ile %32,30 arasında değişen oranlarda

daha iyi performans göstermiştir. Son olarak uygunluk değerleri açısından RC10_50 veri grubuna ait

sonuçlar değerlendirilecek olursa en iyi sonuç YAKA yöntemi ile elde edilmiştir. ABA yöntemi ise en iyi

sonucu sağlayan YAKA yönteminden %2,98 ile %13,75 arasında değişen oranlarda uzaklıkta çözümler

sağlamıştır. Şekil 27’da elde edilen uygunluk değerlerine ilişkin grafik gösterilmektedir.

Çalışmada çözüm kalitesinin değerlendirilmesinde ele alınan bir diğer parametre ise kullanılan araç

sayısı olmuştur. Tablo 24’te yer alan deneylerden C10_25, R10_25 ve RC10_25 veri grublarına ait

problemler için en iyi uygunluk değerlerini veren araç sayıları alınmış ve geliştirilen YAKA ve ABA

yöntemi için karşılaştırmaya tabi tutulmuş ve Tablo 28’de belirtilmiştir.

0

200

400

600

800

1000

1200

1400

C
1

0
1

C
1

0
2

C
1

0
3

C
1

0
4

C
1

0
5

C
1

0
6

C
1

0
7

C
1

0
8

C
1

0
9

R
1

0
1

R
1

0
2

R
1

0
3

R
1

0
4

R
1

0
5

R
1

0
6

R
1

0
7

R
1

0
8

R
1

0
9

R
1

1
0

R
1

1
1

R
1

1
2

R
C

1
0

1

R
C

1
0

2

R
C

1
0

3

R
C

1
0

4

R
C

1
0

5

R
C

1
0

6

R
C

1
0

7

R
C

1
0

8U
Y

G
U

N
L

U
K

 D
E

Ğ
E

R
L

E
R

İ

VERİ SETLERİ

5 0 M ÜŞTERİLİ VERİ SETLERİNDE YAKA VE AB A

YÖNTEM LERİNİN UYGUNLUK DEĞERLERİNİN

KARŞILAŞTIRILM ASI

YAKA

ABA

𝑵𝑽𝒀𝑨𝑲𝑨 𝑵𝑽𝑨𝑩𝑨

Tabloda araç sayıları açısından yapılan incelemede her iki yöntemde de C106 dışında kalan bütün

C10_25 deney setleri üzerinde aynı sonuçlar elde edilmiştir. R101, R103, R104 ve R111 problemleri

dışındaki tüm R10_25 problemlerinde YAKA ve ABA yöntemi ile eşit sayıda araç kullanılarak sonuçlara

ulaşılmıştır. R101 probleminde ABA yönteminde YAKA yöntemine göre %12,50 oranla daha iyi çözüm

sağlanırken; R103, R104 ve R111 veri grubunda ise YAKA yöntemi ABA yöntemine göre %20 ile %25

oranlarda daha iyi sonuçlar elde etmiştir. Son olarak RC10_25 grubuna ait problem verilerinde ise her iki

yöntem ile RC105 verisi dışındaki tüm verilerde eşit sayıda araç kullanılarak sonuçlara ulaşılmıştır.

RC105 verisinde en uygun çözüm YAKA yöntemi ile 4 araç kullanılarak elde edilirken; ABA yöntemi ile

ise 5 araçla en uygun sonuca ulaşılmıştır. Elde edilen araç sayılarına ilişkin grafik Şekil 28’de

gösterilmektedir.

Tablo 25’ten 50 müşterili 29 test problemleri üzerinde her iki yöntem kullanılarak yapılan 5 tekrarlı

deneylerin sonucunda ortaya çıkan en iyi sonuçların kaç araçla elde edildiğine ilişkin bilgiler veri

grublarına göre Tablo 29’da ele alınmıştır.

𝑵𝑽𝒀𝑨𝑲𝑨 𝑵𝑽𝑨𝑩𝑨

0

2

4

6

8

10

C
1

0
1

C
1

0
2

C
1

0
3

C
1

0
4

C
1

0
5

C
1

0
6

C
1

0
7

C
1

0
8

C
1

0
9

R
1

0
1

R
1

0
2

R
1

0
3

R
1

0
4

R
1

0
5

R
1

0
6

R
1

0
7

R
1

0
8

R
1

0
9

R
1

1
0

R
1

1
1

R
1

1
2

R
C

1
0

1

R
C

1
0

2

R
C

1
0

3

R
C

1
0

4

R
C

1
0

5

R
C

1
0

6

R
C

1
0

7

R
C

1
0

8

A
R

A
Ç

 S
A

Y
IL

A
R

I

VERİ SETLERİ

2 5 M ÜŞTERİLİ VERİ SETLERİNDE YAKA VE AB A

YÖNTEM LERİNİN ARAÇ SAYILARININ

KARŞILAŞTIRILM ASI

NV_YAKA

NV_ABA

C10_50 grubuna ait problemlerin tamamında YAKA ile 5 araç kullanılarak en iyi çözüm elde

edilirken; ABA yöntemi ile veri grubuna göre kullanılan araç sayısı 6 ile 7 arasında değişkenlik

göstermiştir. Diğer bir ifade ile YAKA yöntemi ABA yöntemine göre %20 ile %40 farkla daha iyi

performans sergilemiştir. R105, R107, R111 ve R112 problemleri haricindeki tüm R10_50 veri grubundaki

problemlerde YAKA yöntemi ABA yöntemine göre kullanılan araç sayısı bakımından %7,69 ile %22,22

arasında değişen oranlarda daha iyi performans sergilediği Tablo 29’dan görülmektedir. R105, R107,

R111 ve R112 problemlerinde ise her iki yöntem ile aynı sayıda araç kullanılarak en iyi sonuçlara

ulaşılmıştır. Bu problem verileri için aynı sayıda araç kullanılması ortaya çıkan uygunluk değerlerinin

her iki yöntem için aynı olacağı anlamına gelmemektedir. Uygunluk değerleri açısından yapılan

kıyaslamada YAKA yönteminin ABA yönteminden daha iyi sonuç ortaya çıkardığı Tablo 27’de

belirtilmişti. RC101 ve RC106’de YAKA yöntemi ile daha az sayıda araç kullanılarak en iyi sonuca

ulaşılmıştır. Her iki yöntem ile aynı sayıda araç kullanılarak en iyi çözümün elde edildiği veri setlerinin

ise RC102 RC103, RC104, RC105, RC107 ve RC108 olduğu Tablo 29’dan anlaşılmaktadır. Şekil 29’da bu

çözümlere ait grafik gösterilmektedir.

Çözüm kalitesinin değerlendirilmesinde kullanılan son parametre ise çözüm süresidir. Tablo 24’te

yer alan deneylerden C10_25, R10_25 ve RC10_25 veri grublarına ait problemler için en iyi uygunluk

değerlerini veren çözüm süreleri alınmış ve geliştirilen YAKA ve ABA yöntemi için karşılaştırmaya tabi

tutulmuş ve Tablo 30’da belirtilmiştir. Çözüm süreleri dakika olarak verilmiştir.

0

2

4

6

8

10

12

14

16

C
1

0
1

C
1

0
2

C
1

0
3

C
1

0
4

C
1

0
5

C
1

0
6

C
1

0
7

C
1

0
8

C
1

0
9

R
1

0
1

R
1

0
2

R
1

0
3

R
1

0
4

R
1

0
5

R
1

0
6

R
1

0
7

R
1

0
8

R
1

0
9

R
1

1
0

R
1

1
1

R
1

1
2

R
C

1
0

1

R
C

1
0

2

R
C

1
0

3

R
C

1
0

4

R
C

1
0

5

R
C

1
0

6

R
C

1
0

7

R
C

1
0

8

A
R

A
Ç

 S
A

Y
IL

A
R

I

VERİ SETLERİ

5 0 M ÜŞTERİLİ VERİ SETLERİNDE YAKA VE AB A

YÖNTEM LERİNİN ARAÇ SAYILARININ

KARŞILAŞTIRILM ASI

NV_YAKA

NV_ABA

𝑻𝒀𝑨𝑲𝑨(𝒅𝒌) 𝑻𝑨𝑩𝑨(𝒅𝒌)

Tablo 30 incelendiğinde, ABA yöntemi hesap süresi bakımından YAKA yöntemine göre C10_25 veri

grubunda %0,39 ile %74,26 arasında değişen oranlarda tasarruf sağlarken; R103 ve R111 problemleri

hariç R10_25 veri grubundaki diğer problemlerde YAKA yöntemi ABA yöntemine göre %7,13 ile %84,87

arasında değişen oranlarda tasarruf sağlamıştır. RC10_25 veri grubuna ait RC106 ve RC107

problemlerinde ABA yöntemi YAKA yöntemine göre sırasıyla %0,30 ile %1,50 oranında çözüm süresi

bakımından daha iyi sonuç sağlamışken; RC10_25 grubuna ait diğer problemlerde YAKA yöntemi %0,15

ile %588,21 arasında daha iyi sonuçlar vermiştir. Genel olarak her iki yöntemi çözüm süreleri açısından

değerlendirecek olursak 29 test probleminin 13’ünde ABA, YAKA’ya göre daha kısa sürede en iyi sonucu

verirken; geriye kalan 16 problem verisinde YAKA daha iyi performans göstermiştir. Tablo 30’da yer

alan değerlere ilişkin grafik Şekil 30’da gösterilmektedir.

50 müşterili veri setleri üzerinde yapılan 5 tekrarlı deney sonucunda YAKA ve ABA yöntemi ile

minimum ve maksimum uygunluk değerlerinin ne kadar sürede elde edildiğine ilişkin bilgiler Tablo

25’te verilmişti. Bu tablodan her iki yöntem ile elde edilen minimum uygunluk değerlerinin hesap

süreleri karşılaştırmaya tabi tutulmuş ve Tablo 31’de gösterilmiştir.

𝑻𝒀𝑨𝑲𝑨(𝒅𝒌) 𝑻𝑨𝑩𝑨(𝒅𝒌)

0,00

5,00

10,00

15,00

20,00

25,00

Ç
ö

zü
m

 S
ü

re
le

ri

Veri Setleri

25 Müşterili Veri Setlerinde Çözüm Sürelerinin Karşılaştırılması

TYAKA(dk)

TABA(dk)

50 müşterili 29 test verisinin 25’inde ABA yönteminin hesap süresi bakımından %1,90 ile %593,57

arasında değişen oranlarda tasarruf sağladığı Tablo 31’den görülmektedir. R101, R112, RC104 ve RC108

problemlerinde ise YAKA yöntemi daha iyi sonuçlar vermiştir. Tablo 31’de belirtilen hesap süreline

ilişkin grafik Şekil 31’de gösterilmektedir. Müşteri sayısındaki artış ile ABA yönteminin çözüm süresi

açısından YAKA yöntemine oranla daha iyi performans gösterdiği ortaya çıkmıştır.

0

50

100

150

200

250

C
1

0
1

C
1

0
2

C
1

0
3

C
1

0
4

C
1

0
5

C
1

0
6

C
1

0
7

C
1

0
8

C
1

0
9

R
1

0
1

R
1

0
2

R
1

0
3

R
1

0
4

R
1

0
5

R
1

0
6

R
1

0
7

R
1

0
8

R
1

0
9

R
1

1
0

R
1

1
1

R
1

1
2

R
C

1
0

1

R
C

1
0

2

R
C

1
0

3

R
C

1
0

4

R
C

1
0

5

R
C

1
0

6

R
C

1
0

7

R
C

1
0

8

H
E

S
A

P
 S

Ü
R

E
L

E
R

İ

VERİ SETLERİ

5 0 M ÜŞTERİLİ VERİ SETLERİNDE ÇÖZÜM SÜRELERİNİN

KARŞILAŞTIRILM ASI

T_YAKA(dk)

T_ABA(dk)

107

Zaman pencereli araç rotalama problemine çözüm bulmak için kesin, sezgisel ve meta-sezgisel

yöntemler kullanılmaktadır. Fakat bu tarz problemlerde büyük veri setlerinin kesin yöntemlerle

çözülmesinin çok uzun zaman alması çoğu araştırmacıları sezgisel ve meta-sezgisel yöntemlere

yöneltmiştir. Bu yöntemleri kullanarak çözüm arayan çok sayıda araştırmacı literatüre katkı sağlamıştır.

Fakat incelemiş olduğumuz mevcut literatürde, probleme yapay arı kolonisi algoritması ve ateş böceği

algoritması ile katkı sağlayan çalışmalar yok denecek kadar azdır. Bu çalışmada, zaman pencereli araç

rotalama problemine yapay arı kolonisi algoritması ve ateş böceği algoritması ile eş zamanlı olarak

çözüm aranmıştır. Probleme ilişkin geniş kapsamlı bir literatür taraması yapıldıktan sonra çözüm için

kullanılacak olan yöntemler ayrıntılı bir şekilde ele alınmıştır.

Doğadaki bal arılarının yiyecek arama davranışlarından esinlenerek oluşturulan yapay arı kolonisi

algoritmasına ve ateş böceklerinin yanıp sönen özelliklerinin ideal davranışlarına dayanan ateş böceği

algoritmasına ayrıntılı bir şekilde yer verilmiştir. Sürü zekasının özellikleri, kendi kendine organize olan

arıların doğadaki davranışlarına, yiyecek kaynaklarına, işçi ve işsiz arı olarak gruplandırılmasına, işçi

arıların bulmuş oldukları yiyecek kaynağının niteliği ile ilgili bilgileri sergilemiş oldukları danslar ile

kovanda bekleyen diğer arıları bilgilendirmesine, temel yapay arı kolonisi algoritmasının evrelerine ve

parametrelerine, problem için geliştirilen yapay arı kolonisi algoritmasına, algoritmanın genel olarak

işleyişinin küçük boyutlu bir örnek üzerinde gösterilmesine değinilmiştir.

Ateş böceklerinin biyolojik temellerine, geceleri yanıp sönen ışıkları sayesinde partnerlerini

çekmeleri veya olası tehditlere karşı önlem aldıklarına, temel ateş böceği algoritmasına, ayrık ateş böceği

algoritmasına, zaman pencereli araç rotalama problemi için geliştirilen ateş böceği algoritmasına

değinilmiş ve geliştirilen algoritmanın işleyişi küçük boyutlu bir örnek üzerinde gösterilmiştir. İki ateş

böceği arasındaki uzaklığın hesaplanması iki ayrı formülle ele alınmıştır. Temel ateş böceği

algoritmasında bu uzaklık Öklid uzaklığı ile ele alınırken ayrık ateş böceği algoritmasında ise

Hammington uzaklığı ile hesaplanmıştır.

ZPARP için geliştirilen YAKA ve ABA yöntemleri araç rotalama problemlerinde sıklıkla kullanılan

en yakın komşu sezgiseli ile bütünleşik bir biçimde kullanılmıştır. En yakın komşu sezgiseli ile

oluşturulan rota çözümlerinin kalitesini arttırabilmek adına ekleme, yer değiştirme, alt diziyi rastgele

ekleme ve 2 − 𝑜𝑝𝑡∗ operatörleri algoritmalara entegre edilmiştir.

Yöntemlere ait yazılımın C# programlama dilinde hazırlanmasının ardından, Yapay Arı Kolonisi

Algoritması ve Ateş böceği Algoritması için en uygun parametre seti istatistiksel analizler ile tespit

edilmiştir. Önerilen YAKA yönteminde problemin çözümü için 7 parametre ve her bir parametre 2 seviye

olarak dikkate alınmış ve bu değerler bazında TAGUCHI deney tasarım yöntemi uygulanmıştır.

TAGUCHI L16 ortogonal dizisi kullanılarak 16 deney yapılmış ve elde edilen sonuç verileri istatistiksel

yöntemlerle analiz edilerek en uygun parametre seti belirlenmiştir.

Ateş böceği algoritmasında ise 1’i 2 seviye 5’i 3 seviye olmak üzere toplamda 6 parametre dikkate

alınmıştır. TAGUCHI L18(2^13^5) ortogonal dizisi ile18 deney yapılmış ve yapılan istatistiksel testler ile

en uygun parametre belirlenmiştir.

En uygun parametre setinin tespitinin yapılmasının ardından geliştirilen yöntemlerin etkinliği

Solomon’un 25 ve 50 müşterili C10_25, R10_25, RC10_25, C10_50, R10_50 ve RC10_50 veri grubuna ait

29 test problemi kullanılarak test edilmiş ve elde edilen sonuçlar bilinen en iyi sonuçların yanında Bard

vd., (2002), Ai e Kachitvichyanukul (2009), Gong vd., (2011), Yodwangjai ve Malampong (2022)’un

sonuçları ile karşılaştırılmıştır. 25 müşterili veri setleri üzerinde önerilen YAKA yöntemi ile bilinen en

iyi çözüme % 0,20 ile % 19,64 arasında değişen oranlarda yakın çözümler sağlanırken; aynı yöntem ile 50

müşterili 29 test problemleri üzerinde bilinen en iyi çözümden uzaklık % 0,21 ile % 15,86 arasında

değişkenlik göstermiştir. YAKA yöntemi diğer dört yöntem ile kıyaslandığında, C103 hariç C10_25

grubuna ait tüm problemlerde aynı sonuçlar elde edilirken; R101, R106, RC102, RC103, RC104 ve RC106

problemleri dışındaki 25 müşterili test problemlerinin 14’ünde karşılaştırılan yöntemlerden daha iyi

performans sağlanmıştır. ABA yöntemi ile ise 25 müşterili veri setleri üzerinde % 0,20 ile % 29,59 arasında

değişen oranlarda çözümler bulunmuştur. C101, R101 ve RC102 haricindeki tüm veri setleri üzerinde

ortaya çıkan sonuçlar bilinen en iyi çözüm ve karşılaştırılan diğer yöntemlerden daha yüksek çıkmıştır.

C101 ile R101 problemlerinin ABA yöntemi ile çözümünden ortaya çıkan uygunluk değerleri ise

karşılaştırılan diğer yöntemler ile aynı sonucu vermiştir. Yodgwangjai ve Malampong (2022)’ın

sonucundan daha iyi sonucu RC102’de elde etmiştir. % 15,61 ile % 65,96 arasında değişen oranlarda

bilinen en iyi çözümden uzaktaki sonuçlar 50 müşterili test problemleri üzerinde ABA yönteminin

kullanılmasıyla gerçekleşmiştir.

Solomon’un test problemleri ile yöntemlerin etkinliğinin belirlenmesinin ardından ileri sürülen bu

iki algoritma birbiri ile uygunluk değerleri, kullanılan araç sayıları ve hesap süreleri bakımından

karşılaştırılmıştır. YAKA yönteminin ABA yöntemine göre uygunluk değerleri ve araç sayısı bakımından

daha iyi çözümler sağladığı belirlenmiştir. Özellikle müşteri sayısındaki artış, her iki yöntem ile elde

edilen en iyi uygunluk değerleri arasındaki farkın daha da net bir şekilde görülmesini sağlamıştır.

Kullanılan araç sayıları bakımından değerlendirme neticesinde 25 müşterili test problemlerinin 23’ünde

eşit sayıda araç kullanılarak uygunluk değerlerine ulaşılırken; diğer geriye kalan 5 problem verisinde

YAKA ile ABA yöntemine göre daha az sayıda araç ile en uygun çözüm elde edilmiştir. Araç sayıları

bakımından değerlendirmede ele alınan 50 müşterili problem setlerinin 19’unda daha iyi çözümler

YAKA ile bulunmuş geriye kalan 10 problem verisinde en iyi çözümler ise her iki yöntemde de eşit sayıda

araç kullanılarak ortaya çıkmıştır. Çözüm süreleri açısından yapılan karşılaştırmada 25 müşterili 29 test

verisinin 16’sında YAKA yöntemi ile daha kısa sürede sonuçlara ulaşılırken; 50 müşterili 29 test verisinin

25’inde ABA yöntemi ile zamandan tasarruf sağlanarak minimum uygunluk değerleri elde edilmiştir.

25 müşterili veri setleri üzerinde yapılan deneylerde uygunluk değerleri bakımından 29 test

probleminin 23’ünde YAKA yöntemi ABA yöntemine göre % 0,51 ile % 34,83 arasında değişen oranlarda

daha iyi çözümler sağlamıştır. Deneye tabi tutulan 50 müşterili veri setlerinin 29’unun tamamında ise %

2,98 ile % 65,61 arasında değişen oranlarda ABA yöntemine göre en iyi çözüm YAKA ile elde edilmiştir.

Araç sayısı ile ilgili olarak yapılan karşılaştırmalarda ise 25 müşterili veri setlerinden 5 problem verisi

(C106, R103, R104, R111 ve RC105) üzerinde YAKA yöntemi ABA yöntemine göre % 20 ile % 33,33

arasında değişen oranlarda en az rota ile en iyi çözümü vermiştir. Bu oran 50 müşterili veri setlerinde ele

alınan 29 problemin 19’unda % 7,69 ile % 40 arasında değişkenlik göstermiş ve ABA’ya oranla az sayıda

araç kullanılarak oluşturulan çözümler YAKA ile elde edilmiştir. Hesap süresi ile ilgili olarak yapılan

incelemede ise 25 müşterili veri setlerine ait 13 problem verisinde ABA yöntemi ile %0,13 ile %74,26

arasında değişen oranlarda daha iyi sonuçlar elde edilmiştir. Geri kalan diğer 16 problem verisinde ise

YAKA yönteminin daha iyi çözümü %0,15 ile %588,21 arasında değişen oranlarda zamandan tasarruf

sağlayarak elde ettiği görülmektedir. Müşteri sayısında ki artış ABA yöntemini çözüm süreleri açısından

olumlu etkilemiştir. 50 müşterili 26 test probleminde hesap süreleri açısından ABA yöntemi %1,90 ile

%593,57 arasında değişen oranlarda iyi sonuçlar elde etmiştir.

Bazı problemlerin sonucunda yüksek oranda sapmalar ve varyasyon olduğu açıktır. Özellikle

problem boyutu arttıkça ABA yöntemi ile uygunluk değerleri ve araç sayıları açısından bu sapmalar

daha da ortaya çıkmıştır. Söz konusu bu sapmalar ve varyasyonlar problemin türünden ve geliştirilen

ABA yönteminden kaynaklanabileceğinden önerilen yöntemin performansını ilerletmek için bu alanda

daha fazla araştırma yapılması gerekmektedir. YAKA ile bazı problemlerde sonuçlardan sapmalar olsa

da ABA’ya oranla uygunluk değerleri ve araç sayısı bakımından oldukça iyi sonuçlar elde edildiği

açıktır. Müşteri sayısındaki artış ile birlikte YAKA yönteminin ABA yöntemine olan üstünlüğü uygunluk

değerleri ve araç sayısı bakımından açıkça görülebilmektedir. Müşteri sayısının artması sadece ortaya

çıkan uygunluk değerlerini ve araç sayılarını etkilememiş aynı zamanda hesap sürelerini de etkilemiştir.

58 problem verisinde genel olarak hesap süresi açısından yapılan kıyaslama da ABA yöntemi, YAKA

yöntemine göre daha iyi performans göstermiştir. Fakat deney sonuçları, ZPARP için yapılan çalışmalar

ile karşılaştırıldığında, YAKA yaklaşımının yüksek kaliteli çözümler bulabildiğini göstermiştir.

Gelecekteki çalışmalara gelince, önerilen YAKA ve FA'yı çoklu depo, heterojen filo ve bulanık zaman

kısıtlamaları gibi diğer çeşitli ARP ile test etmek ilginç olabilir. Bununla birlikte, bazı problem

durumlarının sonucunda ortaya çıkan yüksek sapma ve varyasyon ile başa çıkmak için ABA yönteminin

performansını iyileştirme yönünde daha fazla araştırma yapılması önerilmektedir. YAKA yönteminin

çözüm süresi açısından daha iyi performans göstermesi için değişken komşuluk arama sezgiseli, yarasa

algoritması, guguk kuşu arama algoritması, yusufçuk algoritması gibi yöntemlerle entegre edilerek

kullanılması sonraki yapılacak çalışmalar için tavsiye edilmektedir. Diğer taraftan ileri sürülen YAKA

yönteminin diğer ARP varyantlarına veya problem tipine uygulanması da umut vericidir. Yeni etkili

yöntemler ve bunlar arasında yeni işbirliği şemaları geliştirmek, gelecekte farklı hesaplama açısından zor

problemleri çözmek için güçlü bir araç sağlayacaktır.

110

Acı, Ç. İ. ve Gülcan, H. (2019). A modified dragonfly optimization algorithm for single- and

multiobjective problems using brownian motion. Computational Intelligence and Neuroscience.

https://doi.org/10.1155/2019/6871298

Aggarwal, D. ve Kumar, V. (2018). An improved firefly algorithm for the vehicle routing problem with

time windows. International Conference on Advances in Computing, Communications and Informatics.

Ai, T. J. ve Kachitvichyanukul, V. (2009). A particle swarm optimization for vehicle routing problem with

time windows. International Journal Operational Research 6(4).

Akca, K. (2015). Hammadde tedarik aktivitesi için kesin zaman pencereli araç rotalama optimizasyonu

[Yayınlanmamış Yüksek Lisans Tezi]. Uludağ Üniversitesi. http://hdl.handle.net/11452/2759

Akkoyunlu, M. C. ve Engin, O. (2011). Kesikli harmoni arama algoritması ile optimizasyon

problemlerinin çözümü: Literatür araştırması. Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi

Dergisi 26(4).

Ali, N., Othman, M. A., Husain, M. N. ve Misran, M. H. (2014). A review of firefly algorithm. ARPN

Journal of Engineering and Applied Sciences 9(10).

Altabeeb, A. M., Mohsen, A. M. ve Ghallab, A. (2019). An improved hybrid firefly algorithm for

capacitated vehicle routing problem. Applied Soft Computing 84.

https://doi.org/10.1016/j.asoc.2019.105728

Alvarenga, G. B., Mateus, G. R. ve de Tomi, G. (2007). A genetic and set partitioning two-phase approach

for the vehicle routing problem with time windows. Computers & Operations Research 34(6), 1561–

1584. https://doi.org/10.1016/j.cor.2005.07.025

Alzaqebah, M., Abdullah, S. ve Jawarneh, S. (2016). Modified artificial bee colony for the vehicle routing

problems with time windows. Springer Plus 5 (1298). https://doi.org/10.1186/s40064-016-2940-8

Alzaqebah, M., Jawarneh, S., Sarim, H. M. ve Abdullah, S. (2018). Bees algorithm for vehicle routing

problems with time windows. International Journal of Machine Learning and Computing 8(3).

http://dx.doi.org/10.18178/ijmlc.2018.8.3.693

Apostolopoulos, T. ve Vlachos, A. (2011). Application of the firefly algorithm for solving the economic

emissions load dispatch problem. International Journal of Combinatorics.

https://doi.org/10.1155/2011/523806

Aydemir, E. (2006). Esnek zaman pencereli araç rotalama problemi ve bir uygulama (Yayın Nu. 184606) [Yüksek

Lisans tezi, Gazi Üniversitesi].

Aydilek, İ. B. (2017). Değiştirilmiş ateşböceği optimizasyon algoritması ile kural tabanlı çoklu sınıflama

yapılması. Journal of the Faculty of Engineering and Architecture of Gazi University 32(4), 1097-1107.

Badeau, P., Guertin, F., Gendreau, M., Potvin, J. Y. ve Taillard, E. (1997). A parallel tabu search heuristic

for the vehicle routing problem with time windows. Transportation Research Part C: Emerging

Technologies 5(2), 109-122. https://doi.org/10.1016/S0968-090X(97)00005-3

Balseiro, S. R., Loiseau, I. ve Ramonet, J. (2011). An ant colony algorithm hybridized with insertion

heuristics for the time dependent vehicle routing problem with time windows. Computers

&Operations Research 38(6), 954–966. https://doi.org/10.1016/j.cor.2010.10.011

Bansal, J. C., Sharma, H. ve Jadon, S. S. (2013). Artificial bee colony algorithm: a survey. International

Journal of Advanced Intelligence Paradigms 5(1-2). https://doi.org/10.1504/IJAIP.2013.054681

https://doi.org/10.1155/2019/6871298
http://hdl.handle.net/11452/2759
https://doi.org/10.1016/j.asoc.2019.105728
https://doi.org/10.1016/j.cor.2005.07.025
https://doi.org/10.1186/s40064-016-2940-8
http://dx.doi.org/10.18178/ijmlc.2018.8.3.693
https://doi.org/10.1155/2011/523806
https://doi.org/10.1016/S0968-090X(97)00005-3
https://doi.org/10.1016/j.cor.2010.10.011
https://doi.org/10.1504/IJAIP.2013.054681

Barbarosoglu, G. ve Ozgur, D. (1999). A tabu search algorithm for the vehicle routing problem. Computers

& Operations Research 26(3), 255-270. https://doi.org/10.1016/S0305-0548(98)00047-1

Bard, F. J., Kontoravdis, G. ve Yu, G. (2002). A branch and cut procedure for the vehicle routing problem

with time windows. Transportation Science 36(2), 250-269.

Beasley, D., Bull, D. R. ve Martin, R. R. (1993). An overview of genetic algorithms: Part 1, fundamentals.

University Computing 15(2), 56-69.

Bent, R. ve Hentenryck, P. V. (2004). A two-stage hybrid local search for the vehicle routing problem with

time windows. Transportation Science 38(4), 515–530. https://doi.org/10.1287/trsc.1030.0049

Berger, J. ve Barkaoui, M. (2004). A parallel hybrid genetic algorithm for the vehicle routing problem with

time windows. Computers Operations Research 31(12), 2037-2053. https://doi.org/10.1016/S0305-

0548(03)00163-1

Bhargava, S. (2013). A note on evolutionary algorithms and its applications. Adults Learning Mathematics:

An International Journal 8(1), 31-45.

Bonabeau, E., Dorigo, M. ve Theraulaz, G. (1999). Swarm intelligence from natural to artificial systems

(1. baskı). Oxford University Press.

Borcinova, Z. (2017). Two models of the capacitated vehicle routing problem. Croatian Operational

Research Review (CRORR) 8, 463-469. http://dx.doi.org/10.17535/crorr.2017.0029

Brad, J. B., Kontoravdis, G. ve Yu, G. (2002). A branch-and-cut procedure for the vehicle routing problem

with time windows. Transportation Science 36(2), 250–269.

http://dx.doi.org/10.1287/trsc.36.2.250.565

Bramel, J. ve Simchi-Levi, D. (1997). The logic of logistics: Theory, algorithms, and applications for logistics

management. Springer.

Brandao, J. (2011). A tabu search algorithm for the heterogeneous fixed fleet vehicle routing problem.

Computers & Operations Research 38(1), 140–151. https://doi.org/10.1016/j.cor.2010.04.008

Braysy, O. (2001). Genetic algorithms for the vehicle routing problem with time windows. Arpakannus

1/2001 Special issue on Bioinformatics and Genetic Algorithms.

Braysy, O. ve Gendreau, M. (2002). Tabu search heuristics for the vehicle routing problem with time

windows. Top 10 (2), 211-237. http://dx.doi.org/10.1007/BF02579017

Braysy, O. ve Gendreau, M. (2005). Vehicle routing problem with time windows, part I: route

construction and local search algorithms. Transportation Science 39(1),104-118.

http://dx.doi.org/10.1287/trsc.1030.0056

Braysy, O., Gendreau, M. ve Dullaert, W. (2004). Evolutionary algorithms for the vehicle routing problem

with time windows. Journal of Heuristics 10(6), 587-611. http://dx.doi.org/10.1007/s10732-005-5431-

6-

Calvete, H. I., Gale, C., Oliveros, M. J. ve Valverde, B. S. (2007). A goal programming approach to vehicle

routing problems with soft time windows. European Journal of Operational Research 177(3), 1720–

1733. https://doi.org/10.1016/j.ejor.2005.10.010

Camazine, S. ve Sneyd, J. (1991). A model of collective nectar source selection by honey bees: self-

organization through simple rules. J. Theor. Biol. 149, 547-571.

Chen, C. H. ve Ting, C. J. (2005). A hybrid ant colony system for vehicle routing problem with time

windows. Journal of the Eastern Asia Society for Transportation Studies 6, 2822 – 2836.

https://doi.org/10.11175/easts.6.2822

https://doi.org/10.1016/S0305-0548(98)00047-1
https://doi.org/10.1287/trsc.1030.0049
https://doi.org/10.1016/S0305-0548(03)00163-1
https://doi.org/10.1016/S0305-0548(03)00163-1
http://dx.doi.org/10.17535/crorr.2017.0029
http://dx.doi.org/10.1287/trsc.36.2.250.565
https://doi.org/10.1016/j.cor.2010.04.008
http://dx.doi.org/10.1007/BF02579017
https://doi.org/10.1016/j.ejor.2005.10.010
https://doi.org/10.11175/easts.6.2822

Chen, C. ve Zhou, K. (2018). Application of artificial bee colony algorithm in vehicle routing problem

with time windows. International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC).

https://doi.org/10.1109/SDPC.2018.8664999

Chen, S., Chen, R. ve Gao, J. (2017). A modified harmony search algorithm for solving the dynamic

vehicle routing problem with time windows. Scientific Programming, 1-13.

http://dx.doi.org/10.1155/2017/1021432

Chiang, W. C. ve Russell, R. A. (1996). Simulated annealing metaheuristics for the vehicle routing

problem with time windows. Annals of Operations Research 63(1), 3-27.

http://dx.doi.org/10.1007/BF02601637

Chiang, W.C. ve Russell, R.A. (2004). A metaheuristic for the vehicle routing problem with soft time

windows. Journal of the Operational Research Society 55(12), 1298–1310.

http://dx.doi.org/10.1057/palgrave.jors.2601791

Chiu, H. N. (1995) The integrated logistics management system: A framework and case study.

International Journal of Physical Distribution & Logistics Management 25(6), 4-22.

https://doi.org/10.1108/09600039510093249

Christopher, M. (2005). Logistics and supply chain management: Creating value-adding networks (3. baskı). FT

Press.

Cook, W. ve Rich, J. L. (1999). A parallel cuttingplane algorithm for the vehicle routing problem with

time windows. https://hdl.handle.net/1911/101910

Creput, J. C., Koukam, A. ve Hajjam, A. (2007). Self-organizing maps in evolutionary approach for the

vehicle routing problem with time windows. IJCSNS International Journal of Computer Science and

Network Security 7(1).

Dash, M. ve Mohanty, R. (2014). Cuckoo search algorithm for speech recognition. International Journal of

Advanced Research in Computer Engineering & Technology (IJARCET) 3(10).

Daskin, M.S. (1985). Logistics: an overview of the state of the art and perspectives on future research.

Transportation Research 19A(5/6), 383-98.

De Oliveira, H. C. B. ve Vasconcelos, G. C. (2010). A hybrid search method for the vehicle routing problem

with time windows. Annals Operations Research 180, 125–144. http://dx.doi.org/10.1007/s10479-008-

0487-y

De Oliveira, H. C. B., Vasconcelos, G. C. ve Alvarenga, G. B. (2006). A multi-start simulated annealing

algorithm for the vehicle routing problem with time windows. Proceedings of the Ninth Brazilian

Symposium on Neural Networks (SBRN'06). http://dx.doi.org/10.1109/SBRN.2006.4

Demircioğlu, M. (2009). Araç rotalama probleminin sezgisel bir yaklaşım ile çözümlenmesi üzerine bir uygulama

(Yayın Nu. 241435) [Doktora tezi, Çukurova Üniversitesi].

Dhahri, A., Zidi, K. ve Ghedira, K. (2014). Variable neighborhood search based set covering ILP model

for the vehicle routing problem with time windows. Procedia Computer Science 29, 844–854.

https://doi.org/10.1016/j.procs.2014.05.076

Di Gaspero, L. (2003). Local search techniques for scheduling problems: Algorithms and software tools

[Unpublished doctoral dissertation]. Universit`a degli Studi di Udine Dipartimento.

Ding, D. Ve Zou, X., (2016). The optimization of logistics distribution route based on Dijkstra's Algorithm and

C-W Savings Algorithm. 6th International Conference on Machinery, Materials, Environment,

Biotechnology and Computer.

https://doi.org/10.1109/SDPC.2018.8664999
http://dx.doi.org/10.1155/2017/1021432
http://dx.doi.org/10.1007/BF02601637
http://dx.doi.org/10.1057/palgrave.jors.2601791
https://doi.org/10.1108/09600039510093249
https://hdl.handle.net/1911/101910
http://dx.doi.org/10.1007/s10479-008-0487-y
http://dx.doi.org/10.1007/s10479-008-0487-y
http://dx.doi.org/10.1109/SBRN.2006.4
https://doi.org/10.1016/j.procs.2014.05.076

Ding, Q., Hu, X., Sun, L. ve Wong, Y. (2012). An improved ant colony optimization and its application to

vehicle routing problem with time windows. Neurocomputing 98, 101–107.

https://doi.org/10.1016/j.neucom.2011.09.040

Durmuş, Y. T. (2019). Investigation of self-efficacy sources of classroom teachers based on various

variables. International Journal of Human Sciences 16(1), 355-369.

Dursun, P. (2009). Zaman pencereli araç rotalama probleminin genetik algoritma ile modellenmesi (Yayın Nu.

251628) [Yüksek Lisan tezi, İstanbul Teknik Üniversitesi]. http://hdl.handle.net/11527/5720

El Hassani, A. H., Bouhafs, L. ve Koukam, A. (2008). A hybrid ant colony system approach for the

capacitated vehicle routing problem and the capacitated vehicle routing problem with time

windows. In: Caric, T. ve Gold, H. (Eds.), Vehicle Routing Problem (pp. 142). Intech. ISBN 978-953-

7619-09-1. doi: 10.5772/64.

El-Sherbeny, N. A. (2010). Vehicle routing with time windows: An overview of exact, heuristic and

metaheuristic methods. Journal of King Saud University (Science) 22(3), 123–131.

https://doi.org/10.1016/j.jksus.2010.03.002

El-Zarka, S. (2010). Designing a competency framework for logistics executives: The case of the readymade

garments manufacturers in Egypt (Yayın Nu. U641385) [Doctoral Thesis]. ProQuest Dissertations &

Theses Global https://www.proquest.com/dissertations-theses/designing-competency-

framework-logistics/docview/1689623371/se-2?accountid=86200

Erol, V. (2006). Araç rotalama problemleri için populasyon ve komşuluk tabanlı meta-sezgisel bir algoritmanın

tasarımı ve uygulaması (Yayın Nu. 180526) [Yüksek Lisans tezi, Yıldız Teknik Üniversitesi].

http://localhost:6060/xmlui/handle/1/2323

Ezzat, M., Amr, M. ve Kassem, S. S. (2019). Logistics 4.0: Definition and historical background. Novel

Intelligent and Leading Emerging Sciences Conference, Nile University, Giza, Egypt.

http://dx.doi.org/10.1109/NILES.2019.8909314

F, T. J. ve Kachitvichyanukul, V. (2009). A particle swarm optimisation for vehicle routing problem with

time windows. International Journal of Operational Research 6(4).

https://doi.org/10.1504/IJOR.2009.027156

Ferland, J. A., & Costa, D. (2001). Heuristic search methods for combinatorial programming

problems. Publication DIRO-1193, Department of Computer Science and Operations Research.

Fister Jr., I., Fister, D. ve Fister, I. (2013). A comprehensive review of cuckoo search: variants and hybrids.

International Journal of Mathematical Modelling and Numerical Optimisation 4(4).

https://doi.org/10.1504/IJMMNO.2013.059205

Fister, I., Fister Jr., I., Yang, X. S. ve Brest, J. (2013). A comprehensive review of firefly algorithms. Swarm

and Evolutionary Computation 13, 34-36. https://doi.org/10.1016/j.swevo.2013.06.001

Friedrich, H. ve Gumpp, J. (2014). Simplified modeling and solving of logistics optimization problems.

International Journal of Transportation 2(1), 33-52. http://dx.doi.org/10.14257/ijt.2014.2.1.03

Fu, Z., Eglese, R. ve Li, L. Y. O. (2008). A unified tabu search algorithm for vehicle routing problems with

soft time windows. Journal of the Operational Research Society 59, 663 –673.

https://doi.org/10.1057/palgrave.jors.2602371

Gambardella, L. M., Taillard, E. ve Agazzi, G. (1999). A multiple ant colony system for vehicle routing

problem with time windows. Technical Report IDSIA-06-99. IDSIA. Lugano, Switzerland.

Gao, X. Z., Govinddasamy, V., Xu, H., Wang, X. ve Zenger, K. (2015), Review article harmony search

method: Theory and applications. Computational Intelligence and Neuroscience 2015(2), 1-10.

http://dx.doi.org/10.1155/2015/258491

https://doi.org/10.1016/j.neucom.2011.09.040
http://hdl.handle.net/11527/5720
https://doi.org/10.1016/j.jksus.2010.03.002
https://www.proquest.com/dissertations-theses/designing-competency-framework-logistics/docview/1689623371/se-2?accountid=86200
https://www.proquest.com/dissertations-theses/designing-competency-framework-logistics/docview/1689623371/se-2?accountid=86200
http://localhost:6060/xmlui/handle/1/2323
https://doi.org/10.1504/IJOR.2009.027156
https://doi.org/10.1504/IJMMNO.2013.059205
https://doi.org/10.1016/j.swevo.2013.06.001
https://doi.org/10.1057/palgrave.jors.2602371
http://dx.doi.org/10.1155/2015/258491

Ghoseiri, K. ve Ghannadpour, S. F. (2010). Multi-objective vehicle routing problem with time windows

using goal programming and genetic algorithm. Applied Soft Computing 10(4), 1096–1107.

https://doi.org/10.1016/j.asoc.2010.04.001

Ghoumrassi, A. ve Tigu, G. (2017). The impact of the logistics management in customer satisfaction.

Proceedings of the International Conference on Business Excellence 11(1).

https://doi.org/10.1515/picbe-2017-0031

Golden, B. L. (1975). Vehicle routing problems: Formulations and heuristic solution techniques (Report No.

ADA013639). M.I.T. Operations Research Center, Defense Technical Information Center.

https://apps.dtic.mil/sti/pdfs/ADA013639.pdf

Gong, Y. J., Zhang, J., Liu, O., Huang, R. Z., Chung, H. S. H. ve Shi, Y. H. (2011). Optimizing the vehicle

routing problem with time windows: A discrete particle swarm optimization approach. IEEE

Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42(2), 254-267.

Gothania, B., Mathur, G. ve Yadav, R. P. (2014). Accelerated artificial bee colony algorithm for parameter

estimation of frequency-modulated sound waves. International Journal of Electronics and

Communication Engineering 7(1), 63–74.

Göçken, T., Yaktubay, M. ve Kılıç, F. (2018). Zaman pencereli araç rotalama problemi çözümü için çok

amaçlı genetik algoritma yaklaşımı. Gazi University Journal of Science Part C: Design and Technology

6(4), 774-786.

Gökçe, B. ve Taşgetiren, S. (2009). Kalite için deney tasarımı. Makine Teknolojleri Elektronik Dergisi 61, 71-

83.

Groer, C. (2008). Parallel and serial algorithms for vehicle routing problems [Doctoral dissertation, University

of Maryland]. http://hdl.handle.net/1903/9011

Gunawan, V. (2020). Penerapan dragonfly algorithm untuk menyelesaikan capatitated vehicle routing

problem with time windows [Undergraduate Theses, Universitas Katolik Parahyangan].

 http://hdl.handle.net/123456789/10845

Gupta, J. ve Diwaker, C. (2017). Evaluation of capacitated vehicle routing problem with time windows

using ACO-GA. International Journals of Advanced Research in Computer Science and Software

Engineering ISSN: 2277-128X (Volume-7, Issue-6). http://dx.doi.org/10.23956/ijarcsse/V7I6/0319

Gülenç, İ. F. ve Karagöz, B. (2008). E-lojistik ve Türkiye’de E-lojistik uygulamaları. Kocaeli Üniversitesi

Sosyal Bilimler Enstitüsü Dergisi 15(1), 73-91.

Hashimoto, H., Yagiura, M. ve Ibaraki, T. (2008). An iterated local search algorithm for the time-

dependent vehicle routing problem with time windows. Discrete Optimization 5(2), 434–456.

https://doi.org/10.1016/j.disopt.2007.05.004

Hertrich C., Hungerländer P. ve Truden C. (2019). Sweep algorithms for the capacitated vehicle routing

problem with structured time windows. In: Fortz B., Labbé M. (eds), Operations Research Proceedings

2018 (pp. 127-133). Operations Research Proceedings (GOR (Gesellschaft für Operations Research e.V.)).

Springer, Cham. https://doi.org/10.1007/978-3-030-18500-8_17

Homberger, J. ve Gehring, H. (2005). A two-phase hybrid metaheuristic for the vehicle routing problem

with time windows. European Journal of Operational Research 162(1), 220–238.

https://doi.org/10.1016/j.ejor.2004.01.027

Hussain, K., Salleh, M. N. M., Cheng, S., Shi, Y. ve Naseem, R. (2020). Artificial bee colony algorithm: A

component-wise analysis using diversity measurement. Journal of King Saud University – Computer

and Information Sciences 32(7), 794-808. https://doi.org/10.1016/j.jksuci.2018.09.017

https://doi.org/10.1016/j.asoc.2010.04.001
https://apps.dtic.mil/sti/pdfs/ADA013639.pdf
http://hdl.handle.net/1903/9011
http://dx.doi.org/10.23956/ijarcsse/V7I6/0319
https://doi.org/10.1016/j.disopt.2007.05.004
https://doi.org/10.1007/978-3-030-18500-8_17
https://doi.org/10.1016/j.ejor.2004.01.027
https://doi.org/10.1016/j.jksuci.2018.09.017

Iqbal, S. (2012). Vehicle routing problems with soft time windows (Yayın Nu. 111279) [Master Thesis,

Bangladesh University].

Jakara, M., Skrinjar, J. P. ve Brnjac, N. (2019). Vehicle routing problem: Case study on logistics company

in Croatia. International Journal for Traffic and Transport Engineering, 9(4): 456 – 470.

http://dx.doi.org/10.7708/ijtte.2019.9(4).10

Jawarneh, S. ve Abdullah, S. (2015). Sequential insertion heuristic with adaptive bee colony optimisation

algorithm for vehicle routing problem with time windows. PLoS ONE 10(7).

https://doi.org/10.1371/journal.pone.0130224

Jerabek, K., Majercak, P., Kliestik, T. ve Valaskova, K. (2016). Application of clark and Wright´s savings

algorithm model to solve routing problem in supply logistics. “Naše more” 63(3), 115-119.

Joubert, J. W. ve Claasen, S. J. (2006). A sequential insertion heuristic for the initial solution to a

constrained vehicle routing problem. ORİON 22 (1), 105–116. http://dx.doi.org/10.5784/22-1-36

Kachitvichyanukul, V. (2012). Comparison of three evolutionary algorithms: GA, PSO, and DE. Industrial

Engineering & Management Systems 11(3), 215-223.

Kaddouri, Z. ve Omary, F. (2017). Application of the tabu search algorithm to cryptography. (IJACSA)

International Journal of Advanced Computer Science and Applications 8(7).

http://dx.doi.org/10.14569/IJACSA.2017.080712

Kantawong, K. ve Pravesjit, S. (2020). An enhanced ABC algorithm to solve the vehicle routing problem

with time windows. Ecti Transactions on Computer and Information Technology 14(1).

https://doi.org/10.37936/ecti-cit.2020141.200016

Kao, Y., Chen, M. H. ve Huang, Y.T. (2012). A hybrid algorithm based on ACO and PSO for capacitated

vehicle routing problems. Hindawi Publishing Corporation Mathematical Problems in Engineering.

doi:10.1155/2012/726564.

Karaaslan, E. ve Zengin, K. (2016). Ateş böceği algoritması ile haftalık ders programı hazırlama [Konferans

Sunumu]. EEB, Elektrik-Elektronik ve Bilgisayar Sempozyumu, Tokat, TÜRKİYE.

Karaboga, D. ve Basturk, B. (2007). A powerful and efficient algorithm for numerical function

optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization 39, 459–471.

https://doi.org/10.1007/s10898-007-9149-x

Karaboga, D., Gorkemli, B., Ozturk, C. ve Karaboga, N. (2014). A comprehensive survey: artificial bee

colony (ABC) algorithm and applications. Artificial Intelligence Review 42, 21–57.

https://doi.org/10.1007/s10462-012-9328-0

Karakoyun, M. (2015). Kurbağa sıçrama algoritmasının kümeleme problemlerine uygulanması (Yayın Nu.

418871) [Yüksek Lisans tezi, Selçuk Üniversitesi]. http://hdl.handle.net/123456789/14318

Katiyar, S., Nasiruddin, I. ve Ansari, A. Q. (2015). Ant colony optimization: A tutorial review. National

Conference on Advances in Power and Control.

https://www.researchgate.net/publication/281432201_Ant_Colony_Optimization_A_Tutorial_Rev

iew

Kaveh, N. ve Samani, N. K. (2009). How collaborative logistics management increases supply chain

efficiency (Yayın Nu. 2320/5405) [Master Thesis, University of Boras].

http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Ahb%3Adiva-19557

Keskintürk, T., Topuk, N. ve Özyeşil, O. (2015). Araç rotalama problemleri ile çözüm yöntemlerinin

sınıflandırılması ve bir uygulama. İşletme Bilimi Dergisi 3(2).

Kırcı, P. (2016). An optimization algorithm for a capacitated vehicle routing problem with time windows.

Sadhana 41(5), 519–529. http://dx.doi.org/10.1007/s12046-016-0488-5

http://dx.doi.org/10.7708/ijtte.2019.9(4).10
https://doi.org/10.1371/journal.pone.0130224
http://dx.doi.org/10.5784/22-1-36
http://dx.doi.org/10.14569/IJACSA.2017.080712
https://doi.org/10.37936/ecti-cit.2020141.200016
https://doi.org/10.1007/s10898-007-9149-x
https://doi.org/10.1007/s10462-012-9328-0
http://hdl.handle.net/123456789/14318
https://www.researchgate.net/publication/281432201_Ant_Colony_Optimization_A_Tutorial_Review
https://www.researchgate.net/publication/281432201_Ant_Colony_Optimization_A_Tutorial_Review
http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Ahb%3Adiva-19557
http://dx.doi.org/10.1007/s12046-016-0488-5

Kiremitçi, B., Kiremitçi, S. ve Keskintürk, T. (2014). Zaman pencereli çok araçlı dağıtım toplamalı

rotalama problemi için gerçek değerli genetik algoritma yaklaşımı. İstanbul Üniversitesi İşletme

Fakültesi Dergisi 43(2), 391-403. https://dergipark.org.tr/tr/pub/iuisletme/issue/9253/115771

Kok, A. L., Meyer, C. M., Kopfer, H., Marco, J. ve Schutten, J. (2010). Dynamic programming algorithm

for the vehivle routing problem with time windows and EC social legislation. Transportation Science

44(4), 442-454. http://dx.doi.org/10.1287/trsc.1100.0331

Kongkaew, W. (2017). Bat algorithm in discrete optimization: A review of recent applications.

Songklanakarin Journal of Science and Technology Songklanakarin 39 (5), 641-650.

Kukovic, D., Topolsek, D., Rosi, B. ve Jereb, B. (2014). A comparative literature analysis of definitions for

logistics: Between general definition and definitions of subcategories. Business Logistics in Modern

Management, Josip Juraj Strossmayer University of Osijek, Faculty of Economics, Croatia14,111-122.

Kumar, S. N. ve Panneerselvam, R., (2012). A survey on the vehicle routing problem and its variants.

Intelligent Information Management 4, 66-74.

Kuo, R.J., Chiu, C.Y. ve Lin, Y.J. (2004). Integration of fuzzy theory and ant algorithm for vehicle routing

problem with time windows. IEEE Annual Meeting of the Fuzzy Information.

https://doi.org/10.1109/NAFIPS.2004.1337428

Kuram, Ç. (2016). Zaman pencereli araç rotalama problemlerinin popülasyon tabanlı sezgisel yöntemler ile

optimize edilmesi (Yayın Nu. 446437) [Yüksek Lisans tezi, İstanbul Üniversitesi].

Laporte, G., Toth, P. ve Vigo, D. (2013). Vehicle routing: historical perspective and recent contributions.

EURO Journal Transportation and Logistics 2, 1–4. https://doi.org/10.1007/s13676-013-0020-6

Lei, L., Sun, S., Ying, C., Tan, S. ve Sun, Z. (2018). The application of cuckoo search algorithm in the path

planning of logistics vehicles with time windows. Advances in Intelligent Systems Research 161.

https://dx.doi.org/10.2991/tlicsc-18.2018.34

Li, H. ve Lim, A. (2003). Local search with annealing-like restarts to solve the VRPTW. European Journal

of Operational Research 150(1), 115-127. http://dx.doi.org/10.1016/S0377-2217(02)00486-1

Li, X. ve Yang, G. (2016). Artificial bee colony algorithm with memory. Applied Soft Computing 41, 362-

372. https://doi.org/10.1016/j.asoc.2015.12.046

Liberatore, F., Righini, G. ve Salani, M. (2011). A column generation algorithm for the vehicle routing

problem with soft time windows. 4OR-Q J Oper Res 9, 49–82. https://doi.org/10.1007/s10288-010-

0136-6

Lin, S. W., Ying, K.C., Lee, Z. J. ve Chen, H. S. (2006). Vehicle routing problems with time windows using

simulated annealing. IEEE International Conference on Systems, Man, and Cybernetics.

https://doi.org/10.1109/ICSMC.2006.384458

Liu, C., Tao, W., Zhao, C., Li, X., Su, Y. ve Sun, Z. (2019). Research on vehicle routing problem with time

windows based on the dragonfly algorithm. IEEE Intl Conf on Dependable, Autonomic and Secure

Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data

Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech)

https://doi.org/10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00037

Liu, X., Jiang, W. ve Xie, J. (2009). Vehicle routing problem with time windows: A hybrid particle swarm

optimization approach. Fifth International Conference on Natural Computation.

https://doi.org/10.1109/ICNC.2009.353

Luo, J. ve Chen, M. R. (2014). Multi-phase modified shuffled frog leaping algorithm with extremal

optimization for the MDVRP and the MDVRPTW. Computers & Industrial Engineering 72, 84-97.

https://doi.org/10.1016/j.cie.2014.03.004

https://dergipark.org.tr/tr/pub/iuisletme/issue/9253/115771
http://dx.doi.org/10.1287/trsc.1100.0331
https://doi.org/10.1109/NAFIPS.2004.1337428
https://doi.org/10.1007/s13676-013-0020-6
https://dx.doi.org/10.2991/tlicsc-18.2018.34
http://dx.doi.org/10.1016/S0377-2217(02)00486-1
https://doi.org/10.1016/j.asoc.2015.12.046
https://doi.org/10.1007/s10288-010-0136-6
https://doi.org/10.1007/s10288-010-0136-6
https://doi.org/10.1109/ICSMC.2006.384458
https://doi.org/10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00037
https://doi.org/10.1109/ICNC.2009.353

Luo, J. ve Chen, M. R. (2014). Improved shuffled frog leaping algorithm and its multi-phase model for

multi-depot vehicle routing problem. Expert Systems with Applications 41, 2535–2545.

http://dx.doi.org/10.1016/j.eswa.2013.10.001

Luo, J., Li, X., Chen, M. R. ve Liu, H. (2015). A novel hybrid shuffled frog leaping algorithm for vehicle

routing problem with time windows. Information Sciences 316, 266–292.

https://doi.org/10.1016/j.ins.2015.04.001

Mahmudy, W. F. (2014). Improved simulated annealing for optimization of vehicle routing problem with

time windows. Jurnal Ilmiah KURSOR 7(3), 109-116. https://doi.org/10.21107/KURSOR.V7I3.1092

Maleki, F., Yousefikhoshbakht, M. ve Rahati, A. (2017). A hybrid self-adaptive global best harmony

search algorithm for the vehicle routing problem with time windows. BRAIN – Broad Research in

Artificial Intelligence and Neuroscience 8(4).

Mao, S., Zhao, X., Wang, Z., Zheng, M. ve Xie, W. (2016). The uncertain time dependent vehicle routing

problem with soft time windows. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

http://dx.doi.org/10.1109/FUZZ-IEEE.2016.7737665

Marinakis, Y., Marinaki, M. ve Migdalas, A. (2019). A multi-adaptive particle swarm optimization for the

vehicle routing problem with time windows. Information Sciences 481, 311-329.

https://doi.org/10.1016/j.ins.2018.12.086

Miaoer, X. (2017). Distribution logistics and logistics customer services of B2C E-tailing Industry in the Chinese

Market. [Degree Thesis]. (10024/15358). https://urn.fi/URN:NBN:fi:amk-2017090714893

Ming-yao, Q., Li-xin, M., Le, Z. ve Hua-yu, X. (2008). A new tabu search heuristic algorithm for the vehicle

routing problem with time windows. IEEE International Conference on Management Science and

Engineering 15th Annual Conference Proceedings. https://doi.org/10.1109/ICMSE.2008.4669126

Miranda, D. M. ve Conceiçao, S. V. (2016). The vehicle routing problem with hard time windows and

stochastic travel and service time. Expert Systems with Applications 64, 104–116.

https://doi.org/10.1016/j.eswa.2016.07.022

Moccia, L., Cordeau, J. F. ve Laporte, G. (2012). An incremental tabu search heuristic for the generalized

vehicle routing problem with time windows. Journal of the Operational Research Society 63, 232–244.

https://doi.org/10.1057/jors.2011.25

Mogaka, L., Murage, D. K. ve Saulo, M. J. (2016). Power optimization and prioritization in an Island

supplied by a rotating machine based distributed generator using artificial bee colony algorithm.

International Journal of Energy and Power Engineering 5(1), 15-21.

Moghaddam, R. T., Gazanfari, M., Alinaghian, M., Salamatbakhsh, A. ve Norouzi, N. (2011). A new

mathematical model for a competitive vehicle routing problem with time windows solved by

simulated annealing. Journal of Manufacturing Systems 30(2), 83– 92.

https://doi.org/10.1016/j.jmsy.2011.04.005

Moscato, P. ve Cotta, C. (2010). A Modern Introduction to Memetic Algorithms. In: Gendreau M., Potvin

JY. (eds) Handbook of Metaheuristics. International Series in Operations Research & Management Science,

vol 146. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1665-5_6

 Nagata, Y., Braysy, O. ve Dullaert, W. (2010). A penalty-based edge assembly memetic algorithm for the

vehicle routing problem with time windows. Computers & Operations Research 37(4), 724—737.

https://doi.org/10.1016/j.cor.2009.06.022

Najera, A. G. ve Bullinaria, J. A. (2011). An improved multi-objective evolutionary algorithm for the

vehicle routing problem with time windows. Computers & Operations Research 38(1), 287–300.

https://doi.org/10.1016/j.cor.2010.05.004

http://dx.doi.org/10.1016/j.eswa.2013.10.001
https://doi.org/10.1016/j.ins.2015.04.001
https://doi.org/10.21107/KURSOR.V7I3.1092
http://dx.doi.org/10.1109/FUZZ-IEEE.2016.7737665
https://doi.org/10.1016/j.ins.2018.12.086
https://urn.fi/URN:NBN:fi:amk-2017090714893
https://doi.org/10.1109/ICMSE.2008.4669126
https://doi.org/10.1016/j.eswa.2016.07.022
https://doi.org/10.1057/jors.2011.25
https://doi.org/10.1016/j.jmsy.2011.04.005
https://doi.org/10.1007/978-1-4419-1665-5_6
https://doi.org/10.1016/j.cor.2009.06.022
https://doi.org/10.1016/j.cor.2010.05.004

Nalepa, J. ve Blocho, M. (2016). Adaptive memetic algorithm for minimizing distance in the vehicle

routing problem with time windows. Soft Comput 20, 2309–2327. https://doi.org/10.1007/s00500-

015-1642-4

Nazif, H. ve Lee, L. S. (2010). Optimized crossover genetic algorithm for vehicle routing problem with

time windows. American Journal of Applied Sciences 7 (1), 95-101.

http://dx.doi.org/10.3844/ajassp.2010.95.101

Neelima, S., Satyanarayana, N. ve Murthy, P. K. (2016). A comprehensive survey on variants in artificial

bee colony (abc). (IJCSIT) International Journal of Computer Science and Information Technologies 7(4),

1684-1689.

Nesmachnow, S. (2014). An overview of metaheuristics: accurate and efficient methods for optimisation.

International Journal of Metaheuristics 3(4). http://dx.doi.org/10.1504/IJMHEUR.2014.068914

Nikolic, M., Teodorovic, D. ve Selmic, M. (2013). Solving the vehicle routing problem with time windows

by bee colony optimization metaheuristic. 1st Logistics International Conference, Belgrade, Serbia, 28 -

30 November.

Niu, B., Wang, H., Tan, L. J., Li, L. ve Wang, J. W. (2012). Vehicle routing problem with time windows

based on adaptive bacterial foraging optimization. In D. S. Huang, J. Ma, K. H. Jo and M. M.

Gromiha (Eds.), Intelligent Computing Theories and Applications (pp. 672–679). Springer. DOI:

10.1007/978-3-642-31576-3_85

Osaba E., Carballedo R., Yang XS., Fister Jr. I., Lopez-Garcia P., Del Ser J. (2018) On Efficiently Solving

the Vehicle Routing Problem with Time Windows Using the Bat Algorithm with Random

Reinsertion Operators. In: Yang XS. (eds) Nature-Inspired Algorithms and Applied Optimization.

Studies in Computational Intelligence. Vol. 744. Springer, Cham. https://doi.org/10.1007/978-3-319-

67669-2_4

Osaba, E., Carballedo, R., Diaz, F., Onieva, E., Masegosa, A. D. ve Perallos, A. (2018). Good practice

proposal for the implementation, presentation, and comparison of metaheuristics for solving

routing problems. Neurocomputing 271(3), 2-8. https://doi.org/10.1016/j.neucom.2016.11.098

Osaba, E., Yang, X. S., Diaz, F., Onieva, E., D. Masegosa, A. ve Perallos, A. (2017). A discrete firefly

algorithm to solve a rich vehicle routing problem modelling a newspaper distribution system with

recycling policy. Soft Computing 21, 5295–5308. https://doi.org/10.1007/s00500-016-2114-1

Ostfeld, A. (Eds.) (2011). Ant colony optimization-methods and applications. InTech.

https://doi.org/10.5772/577

Özdemir, M. (2013). Zaman kısıtı altında takım oryantiring problemlerinin yapay arı kolonisi yaklaşımı ile

çözümü (Yayın Nu. 340428) [Yüksek Lisans tezi, İstanbul Üniversitesi].

Pan, F., Ye, C., Wang, K. ve Cao, J. (2013). Research on the vehicle routing problem with time windows

using firefly algorithm. Journal of Computers 8(9). http://dx.doi.org/10.4304/jcp.8.9.2256-2261

Pant, M., Thangaraj, R. ve Abraham, A. (2009). Particle swarm optimization: Performance tuning and

empirical analysis. Foundations of Computational Intelligence 3, 101–128.

http://dx.doi.org/10.1007/978-3-642-01085-9_5

Pentapalli, V. V. G. ve Varma P., R. K. (2016). Cuckoo search optimization and its applications: A review.

International Journal of Advanced Research in Computer and Communication Engineering 5(11).

https://doi.org/10.17148/IJARCCE.2016.511119

Petelina, A. (2016). Importance in the development of logistics operations in start-up e-commerce business (Yayın

Nu. 10024/287) [Bachelor’s Thesis, Lahti University]. http://www.theseus.fi/handle/10024/118003

https://doi.org/10.1007/s00500-015-1642-4
https://doi.org/10.1007/s00500-015-1642-4
http://dx.doi.org/10.3844/ajassp.2010.95.101
http://dx.doi.org/10.1504/IJMHEUR.2014.068914
https://link.springer.com/book/10.1007/978-3-642-31576-3
https://doi.org/10.1007/978-3-319-67669-2_4
https://doi.org/10.1007/978-3-319-67669-2_4
https://doi.org/10.1016/j.neucom.2016.11.098
https://doi.org/10.1007/s00500-016-2114-1
https://doi.org/10.5772/577
http://dx.doi.org/10.4304/jcp.8.9.2256-2261
http://dx.doi.org/10.1007/978-3-642-01085-9_5
https://doi.org/10.17148/IJARCCE.2016.511119
http://www.theseus.fi/handle/10024/118003

Polacek, M., Hartl, R. F. ve Doerner, K. (2004). A variable neighborhood search for the multi-depot vehicle

routing problem with time windows. Journal of Heuristics 10, 613-627.

https://doi.org/10.1007/s10732-005-5432-5

Pratiwi, A. B., Pratama, A., Sa’diyah, I. ve Suprajitno, H. (2018). Vehicle routing problem with time

windows using natural inspired algorithms. Journal of Physics: Conference Series 974(1).

http://dx.doi.org/10.1088/1742-6596/974/1/012025

Qamhan, M. A., Qamhan, A. A., Al-Harkan, İ. M. ve Alotaibi, Y. A. (2019). Mathematical modeling and

discrete firefly algorithm to optimize scheduling problem with release date, sequence-dependent

setup time, and periodic maintenance. Mathematical Problems in Engineering.

https://doi.org/10.1155/2019/8028759

Qureshi, A. G., Taniguchi, E. ve Yamada, T. (2009). Column generation-based heuristics for vehicle

routing problem with soft time Windows. Proceedings of the Eastern Asia Society for Transportation

Studies 7.

Qureshi, A. G., Taniguchi, E. ve Yamada, T. (2010). Exact solution for the vehicle routing problem with

semi soft time windows and its application. Procedia Social and Behavioral Sciences 2(3), 5931-5943.

https://doi.org/10.1016/j.sbspro.2010.04.008

Rahman, C. M. ve Rashid, T. A. (2019). Dragonfly algorithm and its applications in applied science

survey. Computational Intelligence and Neuroscience. https://doi.org/10.1155/2019/9293617

Rego, C. ve Alidaee, B. (Eds.) (2005). Metaheuristic optimization via memory and evolution: Tabu search and

scatter search (1. baskı). Springer US. https://doi.org/10.1007/b102147

Rezaeipanah, A., Ahmadi, G., Hajiani, M. ve Darzi, M. R. (2019). An improved hybrid cuckoo search

algorithm for vehicle routing problem with time windows. Journal of Quality Engineering and

Production Optimization 4(2), 189-208. DOI: 10.22070/JQEPO.2020.4978.1119.

Ropke, S. (2005). Heuristic and exact algorithms for vehicle routing problems. Computer Science [Ph.D. Thesis,

University of Copenhagen]. https://orbit.dtu.dk/en/publications/cde05a62-8163-4693-b698-

0fae72cf302c

Rushton, A., Croucher, P. ve Baker, P. (2010). The handbook of logistics and distribution management (3.

Baskı). Kogan Page.

Said, G. A. E. N., Mahmoud, A. M. ve El-Horbaty, E. S. M. (2014). A comparative study of meta-heuristic

algorithms for solving quadratic assignment problem. (IJACSA) International Journal of Advanced

Computer Science and Applications 5(1). https://dx.doi.org/10.14569/IJACSA.2014.050101

Santana, R. M. (2016). Heuristic algorithms and variants of the vehicle routing problem for a distribution

company: A case study. [Master of Thesis].Faculdade De Ciencias E Tecnologia Universidade Nova

De Lisboa, The European Master’s Program in Computational Logic.

Sarah Namany, “Capacitated Vehicle Routing Problem with Variable Fleet of Delivery Vehicles of

Uniform Capacity”, 2017,

http://www.aui.ma/sse-capstone-

repository/pdf/spring2017/CAPACITATED%20VEHICLE%20ROUTING%20PROBLEM%20WIT

H%20VARIABLE%20FLEET%20OF%20DELIVERY%20VEHICLES%20OF%20UNIFORM%20CA

PACITY_SARAH%20NAMANY%20(Final).pdf, (28/06/2022), s. 12.

Schulze, T. ve Fahle, T. (1999). A parallel algorithm for the vehicle routing problem with time window

constraints. Annals of Operations Research 86, 585-607. https://doi.org/10.1023/A:1018948011707

Seeley, T. D., Camazine, S. ve Sneyd, J. (1991). Collective decision-making in honey bees: how colonies

choose among hectar sources. Behav. Ecol. Sociobiol. 28, 277-290.

https://doi.org/10.1007/s10732-005-5432-5
http://dx.doi.org/10.1088/1742-6596/974/1/012025
https://doi.org/10.1155/2019/8028759
https://doi.org/10.1016/j.sbspro.2010.04.008
https://doi.org/10.1155/2019/9293617
https://doi.org/10.1007/b102147
https://orbit.dtu.dk/en/publications/cde05a62-8163-4693-b698-0fae72cf302c
https://orbit.dtu.dk/en/publications/cde05a62-8163-4693-b698-0fae72cf302c
https://dx.doi.org/10.14569/IJACSA.2014.050101
https://doi.org/10.1023/A:1018948011707

Sharma, V., Pattnaik, S. S. ve Garg, T. (2012). A review of bacterial foraging optimization and its

applications. National Conference on Future Aspects of Artificial intelligence in Industrial Automation.

Shi, Y. J., Meng, F. W. ve Shen, G. J. (2012). A modified artificial bee colony algorithm for vehicle routing

problems with time windows. Information Technology Journal 11 (10), 1490-1495.

http://dx.doi.org/10.3923/itj.2012.1490.1495

Szeto, W. Y., Yongzhong, W. ve Sin, C. Ho. (2011). An artificial bee colony algorithm for the capacitated

vehicle routing problem. European Journal of Operational Research 215(1), 126-135.

https://doi.org/10.1016/j.ejor.2011.06.006

Şahin, Y. (2014). Depo operasyonları ve sipariş dağıtım faaliyetlerinin sezgisel yöntemler kullanarak eş zamanlı

optimizasyonu (Yayın Nu. 369156) [Doktora tezi, Süleyman Demirel Üniversitesi].

http://tez.sdu.edu.tr/Tezler/TS01558.pdf

 Şahin, Y. ve Eroğlu, A. (2014). Kapasite kısıtlı araç rotalama problemi için metasezgisel yöntemler:

Bilimsel yazın taraması. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi 19(4),

337-355.

Taha, A., Hachimi, M. ve Moudden, A. (2017). A discrete bat algorithm for the vehicle routing problem

with time windows. International Colloquium on Logistics and Supply Chain Management

(LOGISTIQUA). http://dx.doi.org/10.1109/LOGISTIQUA.2017.7962875

Tan, K. C., Chew, Y. H. ve Lee, L. H. (2006). A hybrid multi-objective evolutionary algorithm for solving

vehicle routing problem with time windows. Computational Optimization and Applications 34, 115–

151. http://dx.doi.org/10.1007/s10589-005-3070-3

Tan, K. C., Lee, L. H., Zhu, Q. L. ve Ou, K. (2001). Heuristic methods for vehicle routing problem with

time windows. Artificial Intelligence in Engineering 15(3), 281-295. https://doi.org/10.1016/S0954-

1810(01)00005-X

Tan, L., Lin, F. ve Wang, H. (2015). Adaptive comprehensive learning bacterial foraging optimization and

its application on vehicle routing problem with time windows. Neurocomputing 151(3), 1208–1215.

https://doi.org/10.1016/j.neucom.2014.03.082

Tan, X., Luo, X., Chen, W. N. ve Zhang, J. (2005). Ant colony system for optimizing vehicle routing

problem with time windows. International Conference on Computational Intelligence for Modelling,

Control and Automation, and International Conference on Intelligent Agents, Web Technologies and

Internet Commerce (CIMCA-IAWTIC’05). https://doi.org/10.1109/CIMCA.2005.1631470

Taner, F., Galic, A. ve Caric, T. (2012). Solving practical vehicle routing problem with time windows using

metaheuristic algorithms. Promet – Traffic&Transportation 24(4), 343-351.

https://doi.org/10.7307/ptt.v24i4.443

Taş, D., Jabali, O. ve Woensel, T. V. (2014). A vehicle routing problem with flexible time windows.

Computers &Operations Research 52, 39–54. https://doi.org/10.1016/j.cor.2014.07.005

Tepic, J., Tanackov, I. ve Stojic, G. (2011). Ancient logistics - Historical timeline and etymology. Tehni ki

vjesnik 18(3), 379-384.

Tezer, T. (2009). Toplama ve dağıtım zaman pencereli araç rotalama problemi için kesin çözüm yaklaşımı ve örnek

uygulamalar (Yayın Nu. 245506) [Yüksek Lisans tezi, Balıkesir Üniversitesi].

Tom Altman. (t.y.). Computational Complexity CSC 5802. Erişim tarihi: 22.07.2022,

http://cse.ucdenver.edu/~cscialtman/complexity/Report.pdf

Toro, O., Eliana, M., Escobar, Z., Antonia, H., Granada E. ve Azul, L. (2016). Literature review on the

vehicle routing problem in the green transportation context. revista.luna.azúl 42, 362-387.

https://doi.org/10.17151/luaz.2016.42.21

http://dx.doi.org/10.3923/itj.2012.1490.1495
https://doi.org/10.1016/j.ejor.2011.06.006
http://tez.sdu.edu.tr/Tezler/TS01558.pdf
http://dx.doi.org/10.1109/LOGISTIQUA.2017.7962875
http://dx.doi.org/10.1007/s10589-005-3070-3
https://doi.org/10.1016/S0954-1810(01)00005-X
https://doi.org/10.1016/S0954-1810(01)00005-X
https://doi.org/10.1016/j.neucom.2014.03.082
https://doi.org/10.1109/CIMCA.2005.1631470
https://doi.org/10.7307/ptt.v24i4.443
https://doi.org/10.1016/j.cor.2014.07.005
https://doi.org/10.17151/luaz.2016.42.21

Tseng, Y. (2004). The role of transportation in logistics. [Yayınlanmamış Yüksek Lisans Tezi]. University of

South Australia, School of Natural and Built Environments Transport Systems Centre.

Tseng, Y., Yue, W. L. ve Taylor, M. A. P. (2005). The role of transportation in logistics chain. Proceedings

of the Eastern Asia Society for Transportation Studies 5, 1657 – 1672.

Tuntitippawan, N. ve Asawarungsaengkul, K. (2018). A memory integrated artificial bee colony

algorithm with local search for vehicle routing problem with backhauls and time windows.

KMUTNB Int J Sci Technol 11(2), 85-92. http://dx.doi.org/10.14416/j.ijast.2018.03.001

Verma, G. ve Verma, V. (2012). Role and applications of genetic algorithm in data mining. International

Journal of Computer Applications (0975 – 888) 48(17).

Wang, C., Zhou, S., Gao, Y. ve Liu, C. (2018). A self-adaptive bat algorithm for the truck and trailer

routing problem. Engineering Computations 35(2).· http://dx.doi.org/10.1108/EC-11-2016-0408

Wang, D. ve Zhou, H. (2021). A two-echelon electric vehicle routing problem with time windows and

battery swapping stations. Applied Sciences 11(22), 10779. https://doi.org/10.3390/app112210779

Wang, D., Tan, D. ve Liu, L. (2018). Particle swarm optimization algorithm: An overview. Soft Comput 22,

387–408. https://doi.org/10.1007/s00500-016-2474-6

Woch, M. ve Lebkowski, P. (2009). Sequential simulated annealing for the vehicle routing problem with

time windows. Decision Making in Manufacturing and Services 3(1), 87–100.

https://doi.org/10.7494/dmms.2009.3.2.87

Worawattawechai, T. (2017). An artificial bee colony algorithm for the vehicle routing problem with

backhauls and time windows. Songklanakarin Journal of Science and Technology.

Yadav, P. K. ve Prajapati, N. L. (2012). An overview of genetic algorithm and modeling. International

Journal of Scientific and Research Publications 2(9).

Yang, X. S. ve He, X. (2013). Firefly algorithm: Recent advances and applications. International Journal of

Swarm Intelligence 1(1). http://dx.doi.org/10.1504/IJSI.2013.055801

Yang, X., (2013). A review of distribution related problems in logistics and supply chain research.

International Journal of Supply Chain Management 2(4).

Yao, B., Yan, Q., Zhang, M. ve Yang, Y. (2017). Improved artificial bee colony algorithm for vehicle

routing problem with time windows. PLOS ONE 12(9): e0181275.

https://doi.org/10.1371/journal.pone.0181275

Yassen, E. T., Ayob, M., Nazri, M. Z. A. ve Sabar, N. R. (2015). Meta-harmony search algorithm for the

vehicle routing problem with time windows. Information Sciences 325, 140-158.

https://doi.org/10.1016/j.ins.2015.07.009

Yassen, E. T., Ayob, M., Nazri, M. Z. A. ve Sabar, N. R. (2017). An adaptive hybrid algorithm for vehicle

routing problems with time windows. Computers & Industrial Engineering 113, 382-391.

https://doi.org/10.1016/j.cie.2017.09.034

Yesodha, R. ve Amudha, T. (2019, February 4-6). An improved firefly algorithm for capacitated vehicle routing

optimization [Conference presentation]. Amity International Conference on Artificial Intelligence

(AICAI), Dubai, United Arab Emirates. https://doi.org/10.1109/AICAI.2019.8701269

Yeun, L. C., Ismail, W. R., Omar, K. ve Zirour, M. (2008). Vehicle routing problem: Models and solutions.

JQMA 4(1), 205-218.

Yodwangjai, S. ve Malampong, K. (2022). An improved whale optimization algorithm for vehicle routing

problem with time windows. The Journal of Industrial Technology 18(1).

http://dx.doi.org/10.14416/j.ind.tech.2022.04.001

http://dx.doi.org/10.14416/j.ijast.2018.03.001
http://dx.doi.org/10.1108/EC-11-2016-0408
https://doi.org/10.3390/app112210779
https://doi.org/10.1007/s00500-016-2474-6
https://doi.org/10.7494/dmms.2009.3.2.87
http://dx.doi.org/10.1504/IJSI.2013.055801
https://doi.org/10.1371/journal.pone.0181275
https://doi.org/10.1016/j.ins.2015.07.009
https://doi.org/10.1016/j.cie.2017.09.034
https://doi.org/10.1109/AICAI.2019.8701269

Yu, B. ve Yang, Z. Z. (2011). An ant colony optimization model: The period vehicle routing problem with

time windows. Transportation Research Part E: Logistics and Transportation Review 47(2), 166–181.

http://dx.doi.org/10.1016/j.tre.2010.09.010

Yu, B., Yang, Z. Z. ve Yao, B.Z. (2011). A hybrid algorithm for vehicle routing problem with time

windows. Expert Systems with Applications 38(1), 435–441.

http://dx.doi.org/10.1016/j.eswa.2010.06.082

Yu, S., Tai, C., Liu, Y. ve Gao, L. (2016). An improved artificial bee colony algorithm for vehicle routing

problem with time windows: A real case in Dalian. Advances in Mechanical Engineering 8(8) 1–9.

http://dx.doi.org/10.1177/1687814016665298

Zhikharevich, V. V., Matsiuk, N. A. ve Ostapov, S. E. (2016). Solving the routing problem by ant colony

optimization algorithms. International Journal of Computing 15(2), 84-91.

İNTERNET KAYNAKLARI

http://www.bernabe.dorronsoro.es/vrp/index.html?/results/resultsSolom.htm

https://www.teknikturk.com.tr/TR/bilgi-merkezi/4101/karinca-ile-mucadele-nasil-yapilir

https://www.anzerbali.com/aricilikta-kafkas-ari-irki/

https://www.anzerbalirize.com/

https://www.aricilik.com.tr/bal-arisi-vucudunun-ic-yapisi/

https://media.istockphoto.com/illustrations/fly-firefly-illustration-

id844831190?k=20&m=844831190&s=612x612&w=0&h=-

b9adB4wlHd0GICc6psSepuyY6yILEdtuQx9SeJDvZU=

http://dx.doi.org/10.1016/j.tre.2010.09.010
http://dx.doi.org/10.1016/j.eswa.2010.06.082
http://dx.doi.org/10.1177/1687814016665298
http://www.bernabe.dorronsoro.es/vrp/index.html?/results/resultsSolom.htm
https://www.teknikturk.com.tr/TR/bilgi-merkezi/4101/karinca-ile-mucadele-nasil-yapilir
https://www.anzerbali.com/aricilikta-kafkas-ari-irki/
https://www.anzerbalirize.com/
https://www.aricilik.com.tr/bal-arisi-vucudunun-ic-yapisi/
https://media.istockphoto.com/illustrations/fly-firefly-illustration-id844831190?k=20&m=844831190&s=612x612&w=0&h=-b9adB4wlHd0GICc6psSepuyY6yILEdtuQx9SeJDvZU
https://media.istockphoto.com/illustrations/fly-firefly-illustration-id844831190?k=20&m=844831190&s=612x612&w=0&h=-b9adB4wlHd0GICc6psSepuyY6yILEdtuQx9SeJDvZU
https://media.istockphoto.com/illustrations/fly-firefly-illustration-id844831190?k=20&m=844831190&s=612x612&w=0&h=-b9adB4wlHd0GICc6psSepuyY6yILEdtuQx9SeJDvZU

	Boş Sayfa

